期刊文献+
共找到163篇文章
< 1 2 9 >
每页显示 20 50 100
基于残差神经网络、双向长短期记忆网络和注意力机制的肠鸣音检测方法研究
1
作者 郝亚丽 万显荣 +3 位作者 江从庆 任相海 张小明 翟详 《中国医疗器械杂志》 2024年第5期498-504,共7页
肠鸣音可以反映胃肠道的运动和健康状况,然而,传统的人工听诊方式存在主观性偏差且耗时耗力。为了更好地辅助医生对肠鸣音的诊断,提高肠鸣音检测的可靠性和高效性,该研究提出了一种结合残差神经网络(ResNet)、双向长短期记忆网络(BiLSTM... 肠鸣音可以反映胃肠道的运动和健康状况,然而,传统的人工听诊方式存在主观性偏差且耗时耗力。为了更好地辅助医生对肠鸣音的诊断,提高肠鸣音检测的可靠性和高效性,该研究提出了一种结合残差神经网络(ResNet)、双向长短期记忆网络(BiLSTM)和注意力机制的深度神经网络模型。首先使用自主研发的多通道肠鸣音采集系统采集了大量带标签的临床数据,采用多尺度小波分解和重构方法对肠鸣音信号进行预处理,然后提取对数梅尔谱图特征送入网络进行训练,最后通过10折交叉验证和消融实验来评估模型的性能和验证其有效性。实验结果表明,该模型在精确率、召回率和F1分数方面分别达到了83%、76%和79%,能够有效地检测出肠鸣音片段并定位其起止时间,表现优于以往的算法。该算法不仅可以为医生在临床实践中提供辅助信息,还为肠鸣音的进一步分析和研究提供了技术支撑。 展开更多
关键词 肠鸣音 残差神经网络 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于卷积神经网络和双向长短期记忆网络的气温预测模型
2
作者 叶剑 唐欢 +1 位作者 殷华 高振翔 《现代信息科技》 2024年第21期35-40,45,共7页
气温与环境要素之间存在非线性关系,针对传统的预测方法难以捕捉数据的内在特征和时间相关性问题,提出一种基于卷积神经网络与双向长短期记忆网络相结合的气温预测模型。基于宿迁四个国家气象观测站的逐小时观测数据,首先通过一维卷积... 气温与环境要素之间存在非线性关系,针对传统的预测方法难以捕捉数据的内在特征和时间相关性问题,提出一种基于卷积神经网络与双向长短期记忆网络相结合的气温预测模型。基于宿迁四个国家气象观测站的逐小时观测数据,首先通过一维卷积神经网络提取气象要素数据的空间特征,然后将这些特征引入双向长短期记忆网络中来全面学习并掌握气象要素的上下文信息,进而对气温进行有效预测。实验结果表明,与其他的预测方法相比,所提模型在空间特征提取和时序特征学习方面表现卓越,且其在气温预测的精度上有显著的优势。 展开更多
关键词 深度学习 卷积神经网络 双向长短期记忆网络 气温预测 对比分析
在线阅读 下载PDF
卷积循环神经网络的高光谱图像解混方法
3
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码器 卷积长短期记忆网络 深度光谱分区
在线阅读 下载PDF
基于双向长短期记忆神经网络的水平地应力预测方法 被引量:7
4
作者 马天寿 向国富 +2 位作者 石榆帆 桂俊川 张东洋 《石油科学通报》 2022年第4期487-504,共18页
水平地应力是井壁稳定分析和水力压裂改造的关键基础参数,但深部地层地质环境复杂且隐蔽,使得水平地应力的准确快速预测难度较大。考虑到传统测井解释和神经网络模型难以描述测井数据与地应力之间的空间相关性,提出采用一种基于双向长... 水平地应力是井壁稳定分析和水力压裂改造的关键基础参数,但深部地层地质环境复杂且隐蔽,使得水平地应力的准确快速预测难度较大。考虑到传统测井解释和神经网络模型难以描述测井数据与地应力之间的空间相关性,提出采用一种基于双向长短期记忆神经网络(BiLSTM)的水平地应力预测方法;以四川盆地CL气田两口直井为例,将两口直井分别作为训练井和测试井,通过训练井建立测井参数与地应力之间的非线性映射关系,实现对测试井水平地应力的预测;结合测井参数相关性和实际地质含义,分析了不同测井参数组合模式下水平地应力的预测效果。研究结果表明:(1)对比测井解释和岩心差应变测试结果发现,垂向地应力测井解释误差为0.39%,最大水平地应力测井解释误差为0.18%~0.64%,最小水平地应力测井解释误差为0.29%,说明测井解释与实际地应力吻合较好;(2)工区地应力大小排序为垂向地应力>最大水平地应力>最小水平地应力,属于潜在正断层应力状态;(3)水平地应力与垂深、密度和自然伽马呈较强的正相关关系,与纵波时差、井径、补偿中子和横波时差呈负相关关系;(4)不同的测井参数组合对水平地应力的预测效果不同,其中最优的测井参数组合为垂深、井径、密度、补偿中子、自然伽马、纵波时差;(5)通过正交设计实验,确定了最优超参数取值方案,其预测得到的最大和最小水平地应力平均绝对百分比误差分别为0.48‰和0.50‰。结论认为,BiLSTM模型能够有效捕捉测井参数随深度的变化趋势和测井参数的前后关联信息,可以实现水平地应力的精准预测。 展开更多
关键词 地应力 水平地应力 长短期记忆神经网络 双向长短期记忆神经网络 测井
在线阅读 下载PDF
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:23
5
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于长短期记忆循环神经网络的伊拉克H油田碳酸盐岩储层渗透率测井评价 被引量:6
6
作者 杨旺旺 张冲 +3 位作者 杨梦琼 张亚男 汪明锐 孙康 《大庆石油地质与开发》 CAS CSCD 北大核心 2022年第1期126-133,共8页
伊拉克H油田碳酸盐岩储层孔隙结构复杂,孔隙类型多样,给渗透率测井评价工作带来了极大困难。针对这一问题,建立了基于测井序列信息的长短期记忆(LSTM)循环神经网络渗透率预测模型。从测井响应差异以及测井序列信息出发,优选敏感测井曲线... 伊拉克H油田碳酸盐岩储层孔隙结构复杂,孔隙类型多样,给渗透率测井评价工作带来了极大困难。针对这一问题,建立了基于测井序列信息的长短期记忆(LSTM)循环神经网络渗透率预测模型。从测井响应差异以及测井序列信息出发,优选敏感测井曲线,搭建LSTM循环神经网络,训练网络并优化网络参数,建立了基于LSTM循环神经网络的伊拉克H油田碳酸盐岩储层渗透率预测模型。应用该模型对伊拉克H油田进行渗透率测井评价,并将预测结果与灰色系统预测模型GM(0,N)进行对比。结果表明:相对于灰色系统预测模型的结果,基于LSTM循环神经网络的渗透率预测模型的均方根误差降低了29.47%,皮尔逊(Pearson)相关系数提高了6.59%,取得了较好的应用效果。该模型能够充分挖掘测井曲线与渗透率之间关系的信息,提升了储层渗透率评价精度。 展开更多
关键词 长短期记忆循环神经网络 伊拉克H油田碳酸盐岩储层 渗透率 测井评价
在线阅读 下载PDF
应用长短期记忆循环神经网络的弱反射信号增强方法 被引量:1
7
作者 隋京坤 陈胜 +1 位作者 郑晓东 胡天跃 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期1-8,共8页
由于沉积环境的特殊性和复杂性,地下介质中不同反射界面的波阻抗差可能差异巨大。如果储层的有效反射信息较弱,在地震数据中极可能被强反射信息掩盖,不易被识别,影响了储层识别效果,因此亟需一种解释性处理技术突出弱反射信息。常规方... 由于沉积环境的特殊性和复杂性,地下介质中不同反射界面的波阻抗差可能差异巨大。如果储层的有效反射信息较弱,在地震数据中极可能被强反射信息掩盖,不易被识别,影响了储层识别效果,因此亟需一种解释性处理技术突出弱反射信息。常规方法一般是先从地震数据中分离出强反射分量,再将它削弱或删除。但如果地震子波提取不准确,减去法中强反射残留会引入虚假信号。文中提出了一种“升弱降强”的新思路,通过构建幂次反射系数映射模型缩小弱反射信号与强反射信号的相对差异。首先计算测井反射系数的幂次反射系数,将弱反射系数相对增大、强反射系数相对减小,得到拟反射系数序列;再用原始反射系数序列和拟反射系数序列分别与地震子波进行褶积运算,得到合成地震记录和拟合成地震记录,生成训练样本集;然后用该样本集训练长短期记忆(LSTM)循环神经网络,建立合成地震记录与拟合成地震记录的映射关系;最后将该网络应用于地震数据,增强了地震弱反射信号。模型和实际数据应用结果表明,该方法能有效增强地层本身引起的弱反射信号,提高地震数据的储层识别能力。 展开更多
关键词 拟反射系数 长短期记忆(LSTM)循环神经网络 弱反射信号增强
在线阅读 下载PDF
基于时空注意力机制的双向长短期记忆神经网络的股指预测研究 被引量:2
8
作者 杨蓦 王静 《运筹与管理》 CSSCI CSCD 北大核心 2023年第8期174-180,共7页
股票市场是一个高噪音的混沌系统,其外部属性之间的相关性问题以及在长期预测时外部影响对股价波动的加剧,导致对股票市场进行准确预测是一项富有挑战性的工作。为解决上述问题,本文利用基于注意力机制的双向长短期记忆神经网络(BiLSTM... 股票市场是一个高噪音的混沌系统,其外部属性之间的相关性问题以及在长期预测时外部影响对股价波动的加剧,导致对股票市场进行准确预测是一项富有挑战性的工作。为解决上述问题,本文利用基于注意力机制的双向长短期记忆神经网络(BiLSTM)对香港地区恒生指数收盘价进行有效性的实证检验。其中,空间注意力机制用于捕捉输入指标之间的相关性并为其赋予区别权重,时间注意力机制用于描述数据的时间相关性以解决长期预测中的时间依赖问题并为时间步赋予区别权重,BiLSTM神经网络用于拟合数据并构建预测模型。本文还比较了四种基于注意力机制的神经网络方法和六种基线方法,实验结果表明,与当下流行的股票指数预测方法相比,基于双维度注意力机制的BiLSTM可以在短、中、长期预测中均实现更准确的股票指数收盘价预测。 展开更多
关键词 注意力机制 双向长短期记忆神经网络 股票指数预测 长期预测 时空关系
在线阅读 下载PDF
基于循环神经网络的多模态数据层次化缓存系统设计
9
作者 张燕 《现代电子技术》 北大核心 2025年第4期52-56,共5页
为提升对多模态数据的管理效果,提高数据访问速度并减轻数据库负载,设计一种基于循环神经网络的多模态数据层次化缓存系统。在DRAM/NVM混合内存模块中,利用DRAM完成主存NVM的缓存。当DRAM存在缓存缺失时,利用访问监控模块内置高速采集... 为提升对多模态数据的管理效果,提高数据访问速度并减轻数据库负载,设计一种基于循环神经网络的多模态数据层次化缓存系统。在DRAM/NVM混合内存模块中,利用DRAM完成主存NVM的缓存。当DRAM存在缓存缺失时,利用访问监控模块内置高速采集卡来采集NVM上频繁访问4 KB数据块的历史访问记录,再将历史访问记录编码为访问向量后构建训练集,作为长短期记忆(LSTM)网络的输入,用于预测访问频率。在缓存过滤模块中,将访问频率预测结果高于设定阈值部分的4 KB多模态数据读取到DRAM中进行缓存。实验结果显示:所设计系统可最大程度地降低系统带宽占用情况,TLB缺失率低,缓存执行效率较高,面对大页面具备显著缓存优势。 展开更多
关键词 多模态数据 层次化缓存 循环神经网络 长短期记忆(LSTM)网络 DRAM NVM 访问频率
在线阅读 下载PDF
一种基于双向长短期记忆神经网络的Web攻击检测 被引量:2
10
作者 江一民 罗星宇 +2 位作者 于淼 刘月铧 张玉彬 《信息对抗技术》 2023年第1期55-65,共11页
当前,网络空间安全形势日益严重,这是因为网络攻击手段层出不穷。其中,跨站脚本(cross-site scripting,XSS)攻击和结构化查询语言(structured query language,SQL)注入攻击是2种较为常见的网络攻击方式。由于它们的有效载荷样式多样,导... 当前,网络空间安全形势日益严重,这是因为网络攻击手段层出不穷。其中,跨站脚本(cross-site scripting,XSS)攻击和结构化查询语言(structured query language,SQL)注入攻击是2种较为常见的网络攻击方式。由于它们的有效载荷样式多样,导致传统的基于规则的检测以及基于特征的机器学习难以对其进行检测。为了提高对Web攻击的检测效果,降低人工提取特征的繁杂度,提出了一种基于双向长短期记忆神经网络的Web攻击检测方法:使用字符向量化提取Web攻击有效特征的序列,并映射到特征向量,嵌入向量到神经网络中,然后使用双向长短期记忆递归神经网络训练和测试模型。结果表明,该检测方法在真实数据集中的检测准确率达到99.35%,召回率达到99.49%,可以同时检测XSS攻击和SQL注入攻击。证明了这种基于深度学习的检测方法可以较大规模地应用于Web攻击感知平台中。 展开更多
关键词 XSS攻击 SQL注入攻击 双向长短期记忆神经网络 Web安全漏洞 深度学习
在线阅读 下载PDF
长短期记忆神经网络在季节性融雪流域降水-径流模拟中的应用 被引量:10
11
作者 党池恒 张洪波 +2 位作者 陈克宇 支童 卫星辰 《华北水利水电大学学报(自然科学版)》 2020年第5期10-18,33,共10页
可靠的径流模拟对流域水资源规划与管理意义重大。以岷江镇江关水文站实测径流为研究对象,通过与BP神经网络和Elman循环神经网络的对比,验证长短期记忆神经网络在受季节性融雪影响流域日尺度降水-径流模拟中的适用性,并进一步分析长短... 可靠的径流模拟对流域水资源规划与管理意义重大。以岷江镇江关水文站实测径流为研究对象,通过与BP神经网络和Elman循环神经网络的对比,验证长短期记忆神经网络在受季节性融雪影响流域日尺度降水-径流模拟中的适用性,并进一步分析长短期记忆神经网络的关键参数——时间步长对日径流模拟精度的影响。结果表明:①采用BP神经网络进行日径流过程模拟时会丢失流域状态信息,模拟效果最差;②Elman循环神经网络相比BP神经网络,具有相对有限的记忆能力,在积雪时段较长的岷江镇江关水文站控制流域上的模拟效果一般;③长短期记忆神经网络以其特殊的CEC单元和“门”结构,实现了流域状态的长期储存与更新,在日降水-径流模拟中的效果最佳;④通过多次试验发现,当长短期记忆神经网络的时间步长设置为60 d时,模拟精度最高,结合春末夏初的降水、径流和气温变化过程,认为60 d时间步长符合岷江流域实际情况。 展开更多
关键词 降水-径流模拟 季节性融雪 BP神经网络 Elman循环神经网络 长短期记忆神经网络 岷江
在线阅读 下载PDF
基于长短期记忆神经网络的地表太阳辐照度预测 被引量:14
12
作者 赵书强 尚煜东 +1 位作者 杨燕燕 李永华 《太阳能学报》 EI CAS CSCD 北大核心 2021年第3期383-388,共6页
针对地表太阳辐照度(GHI)短期预测问题,提出一种基于长短期记忆神经网络的短期太阳辐照度预测模型。采用递归结构的训练样本,以保证训练样本内部的时间耦合性。为验证所提模型预测GHI的有效性,采用算例与传统人工神经网络模型预测结果... 针对地表太阳辐照度(GHI)短期预测问题,提出一种基于长短期记忆神经网络的短期太阳辐照度预测模型。采用递归结构的训练样本,以保证训练样本内部的时间耦合性。为验证所提模型预测GHI的有效性,采用算例与传统人工神经网络模型预测结果进行对比分析。结果表明:基于长短期记忆神经网络预测模型将均方误差降低88.48%,表明所建模型更适用于GHI预测。 展开更多
关键词 太阳辐照度预测 循环神经网络 长短期记忆神经网络 深度学习
在线阅读 下载PDF
基于卷积双向长短期神经网络的调制方式识别 被引量:8
13
作者 谭继远 张立民 钟兆根 《火力与指挥控制》 CSCD 北大核心 2020年第6期129-134,共6页
针对现有卷积神经网络方法下调制识别时间较长、网络较复杂等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)相结合,提出一种基于CNN-BiLSTM的调制... 针对现有卷积神经网络方法下调制识别时间较长、网络较复杂等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)相结合,提出一种基于CNN-BiLSTM的调制方式识别方法。利用CNN卷积运算提取信号的空间特征,利用BiLSTM提取到信号的时序相关性,利用softmax层输出识别概率,达到多调制识别的目的。实验结果表明,在没有信道和噪声等先验信息的条件下,该方法的识别性能得到了进一步提升,能有效识别16QAM、64QAM等11种调制类别,且该方法的复杂度较低,大大节省了训练识别时间,具有较好的工程应用价值。 展开更多
关键词 调制识别 卷积神经网络 双向长短期记忆神经网络 深度学习
在线阅读 下载PDF
基于长短期记忆神经网络的油田注水预测 被引量:4
14
作者 于志刚 张德政 +2 位作者 宋文江 葛嵩 辛小军 《吉林大学学报(信息科学版)》 CAS 2022年第1期77-81,共5页
为解决目前常用的人工智能注水预测无法考虑数据在时间上的相关性问题,通过选取一种基于循环神经网络(RNN:Recurrent Neural Network)改进的长短期记忆(LSTM:Long Short-Term Memory Neural Network)神经网络构建油田注水预测模型。该... 为解决目前常用的人工智能注水预测无法考虑数据在时间上的相关性问题,通过选取一种基于循环神经网络(RNN:Recurrent Neural Network)改进的长短期记忆(LSTM:Long Short-Term Memory Neural Network)神经网络构建油田注水预测模型。该模型不仅能考虑到注水量和影响因素之间的联系,还能兼顾注水量随时间变化的趋势和前后关联。以国内某复杂断块油藏的注水预测为例,建立LSTM注水预测模型,对某单井一时段的注水量进行了预测,并与传统RNN建立的预测模型进行了对比。实验结果显示,该模型有着更为理想的预测效果,预测精度较高,能有效地提高油田注水预测的准确性。 展开更多
关键词 注水预测 长短期记忆神经网络 循环神经网络 人工智能
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:1
15
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
在线阅读 下载PDF
基于长短期记忆神经网络的大气温度预测——以合肥市为例 被引量:6
16
作者 雷凯 《科学技术创新》 2021年第30期80-82,共3页
大气温度的变化与人类的生产生活都密切相关,它对人类正常出行、社会发展以及生态环境都有着重要影响,因此对于大气温度更加精准的预测具备一定现实意义。由于影响气温变化的因素复杂繁多,只利用历史气温数据并不能有效预测未来气温值... 大气温度的变化与人类的生产生活都密切相关,它对人类正常出行、社会发展以及生态环境都有着重要影响,因此对于大气温度更加精准的预测具备一定现实意义。由于影响气温变化的因素复杂繁多,只利用历史气温数据并不能有效预测未来气温值。基于此,本文利用降水量等13个气象因子来预测合肥市日最高气温。采用的是LSTM深度学习模型对气温等气象因子时间序列进行建模及预测,并将其与RNN模型预测结果进行比较。最终结果显示,LSTM的均方误差(RMSE)为0.004037,相对于RNN的0.004079,预测精度更高,说明所搭建的LSTM深度学习模型是有效的,且预测精度比较好。 展开更多
关键词 长短期记忆网络(LSTM) 气温预测 循环神经网络(RNN) 深度学习
在线阅读 下载PDF
基于循环神经网络的GDP预测研究与分析
17
作者 白斌丽 吴年祥 《安徽水利水电职业技术学院学报》 2024年第1期85-90,共6页
GDP(Gross Domestic Product)和人均GDP是一个国家经济实力的标志性指标,反映一个国家经济发展状况。通过世界银行提供各国1976年以来的GDP和人均GDP数据对LSTM(Long Short-Term Memory)网络进行了训练,用训练好的LSTM网络对6个国家的人... GDP(Gross Domestic Product)和人均GDP是一个国家经济实力的标志性指标,反映一个国家经济发展状况。通过世界银行提供各国1976年以来的GDP和人均GDP数据对LSTM(Long Short-Term Memory)网络进行了训练,用训练好的LSTM网络对6个国家的人均GDP进行了预测。通过对预测值和实际值的比较,结果显示LSTM网络对人均GDP的预测效果明显优于传统的统计学方法。 展开更多
关键词 人均GDP 深度学习 循环神经网络 长短期记忆网络
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
18
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力层 卷积神经网络 长短期记忆网络 门控循环神经网络
在线阅读 下载PDF
基于循环神经网络的工程专业语义智能分析方法研究
19
作者 师玲萍 《电子设计工程》 2024年第2期36-40,共5页
针对传统翻译方法学习能力差、翻译质量较低的问题,提出了一种基于循环神经网络的专业英语机器翻译方法。该方法以编码器-解码器为模型框架,利用改进的循环卷积神经网络对输入数据加以训练。同时编码器使用多头注意力机制对输入数据进... 针对传统翻译方法学习能力差、翻译质量较低的问题,提出了一种基于循环神经网络的专业英语机器翻译方法。该方法以编码器-解码器为模型框架,利用改进的循环卷积神经网络对输入数据加以训练。同时编码器使用多头注意力机制对输入数据进行共同训练,进而使算法兼具局部与全局特性。解码器单层则采用三子层结构,分别为多头注意力子层、上下文信息子层及全连接子层,可保证句子翻译的流畅性。在实验测试中,所提算法的BLEU值与其他算法相比提升了2.7;而在专业语料翻译测试中,相较于网络翻译,该算法的准确性和流畅度均更优,由此表明其性能较好,具有一定的工程应用价值。 展开更多
关键词 翻译方法 循环神经网络 编码器 解码器 多头注意力机制 长短期记忆网络
在线阅读 下载PDF
基于观测数据潜在特征与双向长短期记忆网络的车辆轨迹预测 被引量:5
20
作者 郭应时 张瑞宾 +2 位作者 陈元华 李天明 蒋春燕 《汽车技术》 CSCD 北大核心 2022年第3期21-27,共7页
针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状... 针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状态观测数据的潜在特征,然后将以序列方式构造的具有时空关系的特征向量作为BiLSTM网络的输入数据,最后利用车辆运行数据对所构建的1DCNN-BiLSTM模型进行训练,形成期望的输入输出映射关系,从而预测车辆的行驶轨迹。试验结果表明,1DCNN-BiLSTM相比传统方法能更加准确有效地处理序列数据,对车辆运行轨迹预测的效果也具有较高的鲁棒性。 展开更多
关键词 观测数据 卷积神经网络 双向长短期记忆 时空关系 轨迹预测
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部