期刊文献+
共找到533篇文章
< 1 2 27 >
每页显示 20 50 100
基于卷积双向长短期记忆网络的微网继电保护故障诊断技术 被引量:1
1
作者 杨志淳 闵怀东 +3 位作者 杨帆 雷杨 胡伟 陈鹤冲 《太阳能学报》 北大核心 2025年第1期420-428,共9页
分布式电源种类和容量不断提升的微网运行方式复杂、故障特征微弱,现有的继电保护装置故障诊断方法无法满足保护需求。提出一种基于卷积双向长短期记忆网络的微网继电保护故障诊断技术。首先,分析多能源互补微网系统架构,对采集的三相... 分布式电源种类和容量不断提升的微网运行方式复杂、故障特征微弱,现有的继电保护装置故障诊断方法无法满足保护需求。提出一种基于卷积双向长短期记忆网络的微网继电保护故障诊断技术。首先,分析多能源互补微网系统架构,对采集的三相电流数据进行预处理,提高后续模型对数据的学习效率;然后,融合卷积神经网络和双向长短期记忆网络提出卷积双向长短期记忆网络的微网继电保护故障诊断方法,提取三相电流数据长序列和局部序列特征实现故障分类、故障定位,融合注意力机制,重点关注对故障诊断有影响的特征,提高故障诊断准确率;最后经过RTDS实时仿真系统进行验证,实验结果表明,所提方法故障诊断精度高、计算时间短,同卷积神经网络、长短期记忆网络、人工神经网络相比,故障分类准确率分别提升8.53%、9.62%、11.45%,故障定位准确率分别提升7.47%、10.61%、10.85%,验证所提方法的有效性与先进性。 展开更多
关键词 微网 继电保护 故障诊断 卷积双向长短期记忆网络 三相电流 注意力机制
在线阅读 下载PDF
针对非平稳信号和高频噪声的自适应噪声完整集成经验模态分解-双向长短期记忆风功率预测模型
2
作者 万思洋 杨苹 +3 位作者 崔嘉雁 李丰能 隗知初 陈文皓 《电网技术》 北大核心 2025年第3期1176-1184,I0085,共10页
提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高... 提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高风电功率预测的准确性和鲁棒性。当前风电功率预测面临非平稳信号和高频噪声的问题,影响了预测的准确性。针对这一问题,通过CEEMDAN分解,将复杂的非平稳信号分解为多个固有模态函数分量(intrinsic mode function,IMF),在此基础上创新性地通过平均波动幅度(average fluctuation range,AFR)计算IMF的平均波动幅度进行高低频划分,应用经验小波变换(empirical wavelet transform,EWT)对高频分量进行滤波,显著降低信号中的高频噪声,提高数据准确性。随后,分别对高频和低频分量建立Bi-LSTM模型,选取最优参数进行训练和预测,将各分量的预测结果叠加得到最终的风电功率预测值。模型经过不同季节和数据集的验证,展示了其在风电功率预测中的通用性和鲁棒性。研究证明,结合CEEMDAN分解、AFR划分和EWT滤波,通过有效的噪声抑制和数据分解,能够显著提升风电功率预测的准确性和稳定性,弥补了传统方法在处理非平稳信号和高频噪声方面的不足。 展开更多
关键词 风电功率预测 双向长短期记忆神经网络 完全集成经验模态分解 经验小波变换 深度学习
在线阅读 下载PDF
基于减平均优化算法与双向长短期记忆网络的锂离子电池健康状态估算
3
作者 李建萱 林琛 周忠凯 《储能科学与技术》 北大核心 2025年第1期358-369,共12页
准确的健康状态(state of health,SOH)估算可以确保锂离子电池安全可靠运行,延长其使用寿命。针对当前许多健康特征无法表征电池老化机理,异常工况时无法准确追踪SOH变化趋势的问题,本文提出一种经验模型与数据驱动相结合的SOH估算方法... 准确的健康状态(state of health,SOH)估算可以确保锂离子电池安全可靠运行,延长其使用寿命。针对当前许多健康特征无法表征电池老化机理,异常工况时无法准确追踪SOH变化趋势的问题,本文提出一种经验模型与数据驱动相结合的SOH估算方法。将锂离子电池负极固体电解质界面(SEI)膜增厚机理融入Arrhenius定律中构建经验模型,然后采用最小二乘法进行参数辨识,并分别计算每个参数与容量的Spearman相关系数。结果表明,它们与容量衰退都具有强相关性,可以作为估算SOH的健康特征。此外,为了克服双向长短期记忆(bidirectional long and short term memory,BiLSTM)网络参数较多且容易陷入过拟合的问题,本文使用减平均优化(subtraction average based optimizer,SABO)算法对BiLSTM的超参数进行寻优,建立SOH估算模型。最后,采用实验测试数据与美国航空航天局(National Aeronautics and Space Administration,NASA)数据验证了所提方法的适应性,并与长短期记忆(long and short-term memory,LSTM)网络、双向长短期记忆网络以及粒子群优化(particle swarm optimization,PSO)的双向长短期记忆网络3种算法的估算结果进行对比。结果表明,采用SABO-BiLSTM算法估算4节电池SOH的平均绝对百分比误差分别为0.043%、0.053%、0.259%、0.230%,相较于LSTM降低了94.58%、 92.85%、 88.65%、 90.13%,相较于BiLSTM降低了89.11%、91.60%、77.90%、76.41%,相较于PSO-BiLSTM降低了58.65%、58.91%、65.37%、69.29%。 展开更多
关键词 锂离子电池 Arrhenius定律 减平均优化算法 双向长短期记忆网络
在线阅读 下载PDF
基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法
4
作者 王泰然 鲍逸非 《北京大学学报(自然科学版)》 北大核心 2025年第3期487-500,共14页
提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模... 提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模拟含噪声数据集.通过深度学习网络的训练,获得性能稳定且泛化能力强的去噪模型,该模型在验证集上也表现优异.与传统去噪方法相比,所提方法的去噪效果显著提升,能够更好地保留信号的细节特征和频谱特征.将该模型应用于自贡和内江地区的实际微震观测数据,结果表明能有效地去除实测数据中的噪声. 展开更多
关键词 微小地震 噪声去除 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 深度学习
在线阅读 下载PDF
双向长短期记忆网络的时间序列预测方法 被引量:6
5
作者 管业鹏 苏光耀 盛怡 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期103-112,共10页
时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时... 时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时序数据预测的应用需求。针对上述问题,提出了一种基于时间注意力机制双向长短期记忆网络的时间序列预测方法。笔者提出的网络模型采用改进的正向和反向传播机制提取时序信息并通过自适应权重分配策略推理未来的时序信息。具体来说,设计了一个改进的双向长短期记忆网络,通过结合双向长短期记忆和长短期记忆网络提取深度时间序列特征,挖掘上下文的时序依赖关系。在此基础上,融合所提出的时间注意力机制,实现对深度时间序列特征进行自适应加权,提升深度时序特征的显著性表达能力。通过与同类代表性方法在多个不同类别数据集上的客观定量对比,实验结果表明,该方法能够在多种类别的复杂时间序列数据上更优的预测性能。 展开更多
关键词 时间序列 双向长短期记忆网络 长短期记忆网络 注意力机制 深度学习
在线阅读 下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:3
6
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
在线阅读 下载PDF
基于双向长短期记忆网络与稀疏自注意力的票据文本识别方法
7
作者 冯宪伟 姚炜 《传感技术学报》 CAS CSCD 北大核心 2024年第11期1946-1951,共6页
提出了一种基于双向长短期记忆网络(BiLSTM)与稀疏自注意力机制的票据文本识别方法。针对票据文本识别中面临的复杂布局、多变字体及背景噪声干扰等挑战,采用深度卷积神经网络进行预处理,准确提取文本区域,并将图像数据转换为序列数据... 提出了一种基于双向长短期记忆网络(BiLSTM)与稀疏自注意力机制的票据文本识别方法。针对票据文本识别中面临的复杂布局、多变字体及背景噪声干扰等挑战,采用深度卷积神经网络进行预处理,准确提取文本区域,并将图像数据转换为序列数据输入到BiLSTM模型中。BiLSTM通过其双向结构,能够同时捕捉文本序列中的前向和后向信息,有效提高了文本理解的准确性。为了进一步提升识别性能,引入了稀疏自注意力机制,通过计算序列中不同位置之间的相关性得分,形成稀疏的注意力矩阵,从而捕捉文本中的长距离依赖关系。这种机制不仅降低了计算复杂度,还提高了模型对关键信息的关注度。实验结果表明,所提出的票据文本识别方法在处理复杂票据文本时表现出色,具有较高的识别精度和效率。与传统方法相比,所提方法能够更好地适应票据文本的多样性和复杂性,并在实际应用中展现出良好的鲁棒性和泛化能力。 展开更多
关键词 稀疏注意力机制 双向长短期记忆网络 票据文本识别 光学字符识别
在线阅读 下载PDF
鲸鱼优化算法-双向长短期记忆神经网络用于断路器机械剩余寿命的预测研究 被引量:13
8
作者 李家豪 王青于 +4 位作者 范玥霖 史石峰 彭宗仁 曹培 徐鹏 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期250-262,共13页
低压断路器的安全可靠是电力系统能否稳定运行的关键一环,因此对断路器进行退化趋势预测和剩余寿命评估具有重要意义。基于鲸鱼优化算法(whale optimization algorithm,WOA)和双向长短期记忆神经网络(bidirectional long short-term mem... 低压断路器的安全可靠是电力系统能否稳定运行的关键一环,因此对断路器进行退化趋势预测和剩余寿命评估具有重要意义。基于鲸鱼优化算法(whale optimization algorithm,WOA)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)提出了一种断路器操动机构剩余寿命的预测方法,首先采用Pearson相关系数法对获得的原始监测数据进行筛选,选择与断路器开断次数相关度较高的数据作为关键退化特征量,基于主成分分析法进行数据融合获得能够综合表征断路器运行状态的健康指数;随后使用滑动时间窗的方法对健康指数时间序列进行重构,再通过WOA-Bi LSTM寻优获得的最佳模型对健康指数进行时间序列预测,从而获得断路器未来多步的退化趋势;最后再根据设定的失效阈值,确定断路器操动机构的剩余寿命。实例验证表明,该文提出的混合预测模型预测精度最高可达96.43%,相比于其他传统预测模型显著提高,对于断路器的实际运维工作具有一定的指导意义。 展开更多
关键词 低压断路器 退化趋势 剩余寿命 双向长短期记忆网络 鲸鱼优化
在线阅读 下载PDF
基于双向长短期记忆网络含间接健康指标的锂电池SOH估计 被引量:16
9
作者 方斯顿 刘龙真 +3 位作者 孔赖强 牛涛 陈冠宏 廖瑞金 《电力系统自动化》 EI CSCD 北大核心 2024年第4期160-168,共9页
快速准确地对锂离子电池进行全寿命周期的健康状态(SOH)估计有助于提高储能设备的安全可靠性。提出一种基于间接健康指标(IHI)和鲸鱼优化算法(WOA)优化的双向长短期记忆(BiLSTM)网络相结合的锂电池SOH估计模型,该模型考虑了未来状态对当... 快速准确地对锂离子电池进行全寿命周期的健康状态(SOH)估计有助于提高储能设备的安全可靠性。提出一种基于间接健康指标(IHI)和鲸鱼优化算法(WOA)优化的双向长短期记忆(BiLSTM)网络相结合的锂电池SOH估计模型,该模型考虑了未来状态对当前SOH的影响。首先,对锂电池恒流恒压(CC-CV)充放电过程进行分析,提取出多个随充放电循环动态变化的电压、电流、温度的时间特征作为IHI,并加入放电负载电压下降时间这一指标;然后,通过相关性分析,从各IHI中筛选出和容量关联度高的IHI作为输入特征;最后,建立基于WOA优化的BiLSTM网络的电池SOH估计模型,并利用美国国家航天航空局锂电池数据集对2个不同工况下的电池SOH进行估计。结果表明,所提方法可有效提高SOH的估计精度。 展开更多
关键词 健康状态 锂离子电池 间接健康指标 鲸鱼优化算法 双向长短期记忆网络
在线阅读 下载PDF
改进双向长短期记忆神经网络的瓦斯涌出量预测 被引量:3
10
作者 祁云 白晨浩 +3 位作者 代连朋 汪伟 薛凯隆 崔欣超 《安全与环境学报》 CAS CSCD 北大核心 2024年第12期4630-4637,共8页
为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM... 为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)的组合模型预测瓦斯涌出量。首先,运用主成分分析法(Principal Components Analysis,PCA)处理瓦斯涌出影响因素,降低数据维度,以减少模型计算时的负担;其次,利用GWO优化BiLSTM模型的学习率(best_lr)、隐藏层层数(best_hd)以及正则化系数(best_l2),可有效避免局部最优解问题,并采用决定系数(R-Square,R^(2))、均方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)对所建模型预测的结果进行综合评价分析;最后,将该模型应用于内蒙古自治区某矿回采工作面预测瓦斯涌出量。结果显示:PCA GWO BiLSTM组合模型相比于长短期记忆神经网络(Long Short-Term Memory,LSTM)和双向长短期记忆神经网络对应的单一模型,其MAE分别降低20.81%、30.17%,RMSE分别降低0.063、0.142,R^(2)则分别提高了0.023、0.075,表明该模型在复杂因素条件下具有更高的精准度、泛化性和鲁棒性。 展开更多
关键词 安全工程 瓦斯涌出 灰狼优化算法 双向长短期记忆神经网络 主成分分析法
在线阅读 下载PDF
基于双向长短期记忆网络的纺纱工艺重用知识图谱构建
11
作者 胡胜 张溪 +2 位作者 刘登基 高冰冰 赵小惠 《丝绸》 CAS CSCD 北大核心 2024年第12期52-60,共9页
针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次... 针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次,根据模式层规则来构建数据层,采用双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)模型捕捉输入序列的上下文信息作为条件随机场(Conditional Random Fields,CRF)的输入,对标签序列进行建模标注以提取关键知识信息,并通过词向量模型(Word2Vec)来计算纺纱相关的文本数据之间的相似度来实现知识融合,从而提升分词准确率;最后通过Neo4j图数据库存储抽取到的纺纱工艺知识,并可视化展示原料、工艺等复杂关系网络,可帮助纺织企业优化生产、提升决策效率。实例分析结果表明,该知识抽取方法具有较高的召回率(88.7%)、准确率(89.9%)和F 1值(89.3%),优于BiLSTM-CRF和LSTM-CRF模型,抽取效果有了显著提升。 展开更多
关键词 知识图谱 纺纱工艺知识 双向长短期记忆网络 知识抽取 知识融合 实体关系
在线阅读 下载PDF
基于残差双向长短期记忆效应网络模型的电力企业碳排放预测 被引量:1
12
作者 陈齐 许明海 +1 位作者 沈赛燕 郭磊 《环境污染与防治》 CAS CSCD 北大核心 2024年第5期689-693,720,共6页
针对电力企业碳排放核算时间长、连续排放监测系统误差大及传统模型拟合困难等问题,结合电力企业燃料燃烧的特性及现有污染物在线监测结果,成功构建了电力行业碳排放的残差双向长短期记忆效应网络(ResNet-BiLSTM)模型,并以浙江省113家... 针对电力企业碳排放核算时间长、连续排放监测系统误差大及传统模型拟合困难等问题,结合电力企业燃料燃烧的特性及现有污染物在线监测结果,成功构建了电力行业碳排放的残差双向长短期记忆效应网络(ResNet-BiLSTM)模型,并以浙江省113家电力企业的数据为样本进行验证。结果表明:与目前主流数据预测算法逻辑回归(Regression)、循环神经网络(RNN)、反向传播神经网络(BPNN)模型相比,ResNet-BiLSTM模型的平均绝对百分比误差分别低5.7、4.1、2.8百分点,对碳排放量的预测更贴近电力企业核算碳排放波动情况,且预测准确率(96%)最高。ResNet-BiLSTM模型的成功应用不仅为电力企业提供了新的碳排放预测途径,同时为提高相关管理部门的碳排放数据监管效率提供了支持。 展开更多
关键词 残差双向长短期记忆效应网络 模型 碳排放 预测
在线阅读 下载PDF
基于双向长短期记忆网络的流体高精度识别新方法 被引量:18
13
作者 周雪晴 张占松 +1 位作者 朱林奇 张超谟 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第1期69-76,共8页
碳酸盐岩储层的储集空间类型多样、储层性质复杂,导致流体的测井响应受到强非均质性的影响,给流体识别工作带来极大困难。针对该问题,提出基于测井序列信息的双向长短期记忆网络(Bi-LSTM)流体识别模型,从测井响应特征差异性分析及相似... 碳酸盐岩储层的储集空间类型多样、储层性质复杂,导致流体的测井响应受到强非均质性的影响,给流体识别工作带来极大困难。针对该问题,提出基于测井序列信息的双向长短期记忆网络(Bi-LSTM)流体识别模型,从测井响应特征差异性分析及相似性分析两方面出发,确定敏感曲线,结合Bi-LSTM网络的输入要求,建立流体识别样本库,并获得基于Bi-LSTM的流体识别模型。应用该方法对鄂尔多斯盆地马家沟组进行流体识别,与单向LSTM模型及其他3类机器学习算法预测结果进行对比。结果表明基于Bi-LSTM的流体识别模型流体识别的符合率从82.7%提高到91.5%,取得较好的应用效果;该模型既能充分利用井下对应深度测井曲线的响应值,又能兼顾测井曲线随深度的变化趋势和前后关联,最大程度避免储层纵向非均质性带来的影响,提高流体识别能力。 展开更多
关键词 流体识别 双向长短期记忆网络 碳酸盐岩 测井序列
在线阅读 下载PDF
基于观测数据潜在特征与双向长短期记忆网络的车辆轨迹预测 被引量:5
14
作者 郭应时 张瑞宾 +2 位作者 陈元华 李天明 蒋春燕 《汽车技术》 CSCD 北大核心 2022年第3期21-27,共7页
针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状... 针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状态观测数据的潜在特征,然后将以序列方式构造的具有时空关系的特征向量作为BiLSTM网络的输入数据,最后利用车辆运行数据对所构建的1DCNN-BiLSTM模型进行训练,形成期望的输入输出映射关系,从而预测车辆的行驶轨迹。试验结果表明,1DCNN-BiLSTM相比传统方法能更加准确有效地处理序列数据,对车辆运行轨迹预测的效果也具有较高的鲁棒性。 展开更多
关键词 观测数据 卷积神经网络 双向长短期记忆 时空关系 轨迹预测
在线阅读 下载PDF
基于图卷积和双向长短期记忆网络的受端电力系统暂态电压稳定评估 被引量:10
15
作者 姜涛 董雨 +2 位作者 王长江 陈厚合 李国庆 《电网技术》 EI CSCD 北大核心 2023年第12期4937-4947,共11页
为快速、准确评估受端电力系统故障后暂态电压稳定状态并定位电压失稳节点/区域,提出一种基于图卷积网络(graph convolutional network,GCN)和双向长短期记忆网络(bidirectional long/short-term memory network,Bi LSTM)的受端电力系... 为快速、准确评估受端电力系统故障后暂态电压稳定状态并定位电压失稳节点/区域,提出一种基于图卷积网络(graph convolutional network,GCN)和双向长短期记忆网络(bidirectional long/short-term memory network,Bi LSTM)的受端电力系统暂态电压稳定评估方法。首先,基于暂态电压时序响应特性及空间分布规律,以及电力系统拓扑连接关系和各节点电气量测数据,构建表征电力系统运行状态的输入特征矩阵,以有效计及暂态电压的时空演变规律;然后,搭建由GCN和BiLSTM相结合的深度神经网络,提取具有最大相关性的暂态电压时空特征信息,进而建立时空特征与暂态电压稳定状态间的映射关系,实现暂态电压失稳节点/区域的精确定位;最后,通过修改后的IEEE-39节点测试系统和某实际电网系统算例对所提方法进行分析、验证,结果验证了所提暂态电压稳定评估方法的准确性和有效性。 展开更多
关键词 受端电力系统 暂态电压稳定 图卷积网络 双向长短期记忆网络 电压失稳节点/区域
在线阅读 下载PDF
基于双向长短期记忆模型的网民负面情感分类研究 被引量:38
16
作者 吴鹏 应杨 沈思 《情报学报》 CSSCI CSCD 北大核心 2018年第8期845-853,共9页
网民负面情感在网络舆情情感分析中具有重要意义,但已有研究缺乏自动化识别海量短文本中网民负面情感的多分类方法。本文利用词嵌入技术学习词语的特征表示,通过增加文本的情感特征生成具有情感意义的词向量,并训练双向长短期记忆模型... 网民负面情感在网络舆情情感分析中具有重要意义,但已有研究缺乏自动化识别海量短文本中网民负面情感的多分类方法。本文利用词嵌入技术学习词语的特征表示,通过增加文本的情感特征生成具有情感意义的词向量,并训练双向长短期记忆模型得到网民负面情感识别模型,在判断网民情感极性的基础上,识别网民的愤怒、悲伤和恐惧三种负面情感,并结合案例数据与SVM、LSTM和CNN等模型进行对比分析。实验表明,具有情感语义的词向量比词向量更适合情感分析任务;利用双向长短期记忆模型可以得到较好的情感识别效果;判断网民情感极性基础上识别网民负面情感的分类方式优于直接判断网民的负面情感的方式。 展开更多
关键词 网络舆情 负面情感分析 情感词向量 双向长短期记忆模型
在线阅读 下载PDF
基于双向长短期记忆网络的共享单车流量预测 被引量:6
17
作者 刘耿耿 朱予涵 郭灿阳 《小型微型计算机系统》 CSCD 北大核心 2021年第9期1871-1876,共6页
近年来,共享单车逐渐成为流行于城市的交通出行手段,过量投放是其目前面临的最大问题,准确预测共享单车流量能有效调节共享单车投放,且能维护城市的交通秩序和形象.考虑到共享单车流量是一种时间序列,当前流量与过去和将来的流量具有密... 近年来,共享单车逐渐成为流行于城市的交通出行手段,过量投放是其目前面临的最大问题,准确预测共享单车流量能有效调节共享单车投放,且能维护城市的交通秩序和形象.考虑到共享单车流量是一种时间序列,当前流量与过去和将来的流量具有密切的联系,本文提出一种基于双向长短期记忆的深度网络模型以预测未来的共享单车流量.该模型的时间步长设置为12,即以过去12个小时的数据作为输入,预测未来一个小时的共享单车流量数据,以此类推,每次向后推移一个小时,从而预测下一个数据.为了验证模型的性能,本文选取人工神经网络,循环神经网络以及长短期记忆网络作为对比模型.实验结果显示,所提出的模型在预测未来的共享单车流量的性能最佳. 展开更多
关键词 共享单车 流量预测 深度学习 双向长短期记忆 大数据
在线阅读 下载PDF
基于双向长短期记忆神经网络的老挝语分词方法 被引量:17
18
作者 何力 周兰江 +1 位作者 周枫 郭剑毅 《计算机工程与科学》 CSCD 北大核心 2019年第7期1312-1317,共6页
作为语言最小独立运行且有意义的单位,将连续型的老挝语划分成词是非常有必要的。提出一种基于双向长短期记忆BLSTM神经网络模型的老挝语分词方法,使用包含913 487个词的人工分词语料来训练模型,将老挝语分词任务转化为基于音节的序列... 作为语言最小独立运行且有意义的单位,将连续型的老挝语划分成词是非常有必要的。提出一种基于双向长短期记忆BLSTM神经网络模型的老挝语分词方法,使用包含913 487个词的人工分词语料来训练模型,将老挝语分词任务转化为基于音节的序列标注任务,即将老挝语音节标注为词首(B)、词中(M)、词尾(E)和单独成词(S)4个标签。首先将老挝语句子划分成音节并训练成向量,然后把这些向量作为BLSTM神经网络模型的输入来预估该音节所属标签,再使用序列推断算法确定其标签,最后使用人工标注的分词语料进行实验。实验表明,基于双向长短期记忆神经网络的老挝语分词方法在准确率上达到了87.48%,效果明显好于以往的分词方法。 展开更多
关键词 神经网络 音节 双向长短期记忆 老挝语分词
在线阅读 下载PDF
一种基于双向长短期记忆结构与多尺度卷积结构融合的轴承智能故障诊断方法 被引量:16
19
作者 欧阳励 何水龙 +2 位作者 朱良玉 胡超凡 蒋占四 《振动与冲击》 EI CSCD 北大核心 2022年第19期179-187,共9页
轴承作为旋转机械中最易损耗的核心基础部件之一,是机械装备的重点监测对象。针对现有轴承智能故障诊断模型存在的对数据信息挖掘片面性及利用率低等问题,构建了一种基于双向长短期记忆(Bidirectional Long Short-term Memory,BLSTM)结... 轴承作为旋转机械中最易损耗的核心基础部件之一,是机械装备的重点监测对象。针对现有轴承智能故障诊断模型存在的对数据信息挖掘片面性及利用率低等问题,构建了一种基于双向长短期记忆(Bidirectional Long Short-term Memory,BLSTM)结构与多尺度卷积结构融合的深度学习网络模型。为了增强模型的分类性能以及提高模型对实际工程环境的贴合度,数据集中各类故障数据的数据量为非等量;然后将数据集通过BLSTM结构来获取具有对称性的数据特征,从而减少模型对前后故障信息记忆的紊乱、增强信息利用率,接着通过多尺度卷积结构对数据特征进行多角度理解与交流,防止特征提取片面化,同时还能增强模型的抗噪性能;最后通过全连接网络实现智能分类。将所提模型分别对深沟球轴承与圆柱滚子轴承故障数据进行处理分析,结果表明该智能模型具有较高的准确度与实用性。 展开更多
关键词 双向长短期记忆 多尺度卷积 深度学习 轴承智能故障诊断
在线阅读 下载PDF
采用小波变换和双向长短期记忆网络的脑电睡眠分期模型 被引量:9
20
作者 王天宇 陈晗 +1 位作者 王刚 吴宁 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期104-111,共8页
针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作... 针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作为单个睡眠片段的分期依据,再使用双向长短期记忆网络进一步提取睡眠片段之间的状态转换规则;最后利用深度学习方法建立特征、规则与睡眠阶段的映射,使用数据扩充和两步训练法训练模型,削弱数据不均衡的影响,完成连续片段的睡眠分期。采用SHHS公开数据库的5793名被试者的睡眠脑电数据对该模型进行验证,实验结果表明,睡眠分期准确率达到85.82%,整体F1达到78.39,Kappa系数达到0.799,和现有方法相比性能明显提升。 展开更多
关键词 睡眠分期 脑电信号 连续小波变换 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部