针对航空发动机剩余使用寿命(RUL)预测方法空间特征提取不充分、时间特征利用不充分,导致RUL预测准确性较低的问题,提出一种融合注意力机制的时空图卷积网络模型GCNBL-A3T(Graph Convolutional Network combined with Bidirectional Lon...针对航空发动机剩余使用寿命(RUL)预测方法空间特征提取不充分、时间特征利用不充分,导致RUL预测准确性较低的问题,提出一种融合注意力机制的时空图卷积网络模型GCNBL-A3T(Graph Convolutional Network combined with Bidirectional Long short-term memory and ATTenTion mechanism)。首先,使用一维卷积神经网络(1D-CNN)提取初始特征;其次,依次使用图卷积网络(GCN)和双向长短期记忆(Bi-LSTM)网络分别提取空间特征和时间特征;再次,利用自注意力机制处理特征并重新分配权重;最后,输入全连接网络获得RUL预测结果。使用商用模块化航空推进系统仿真(C-MAPSS)数据集验证所提模型的有效性。实验结果显示,与先进模型相比,所提模型的Score分数在3个数据子集上取得最小值,在1个数据子集上取得次小值;均方根误差(RMSE)在1个数据子集上取得最小值,在3个数据子集上取得次小值。消融实验结果也验证了所提模型的各模块能有效提升预测精度。展开更多
在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequ...在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequence,Seq2Seq)架构的基础上,将响应重构问题建模为序列生成问题,利用数据间潜在的时空关系显著提高模型的重构性能。此外,提出了一种基于均值平滑的损失计算方法评估模型的整体性能。通过对八自由度振动系统数值算例以及道林厅人行桥实际监测数据的研究,验证了所提出模型的鲁棒性与准确性。试验结果表明,该模型在不同噪声环境下均能胜任响应重构任务,在低信噪比的情况下仍表现出优异的重构性能。展开更多
文摘针对航空发动机剩余使用寿命(RUL)预测方法空间特征提取不充分、时间特征利用不充分,导致RUL预测准确性较低的问题,提出一种融合注意力机制的时空图卷积网络模型GCNBL-A3T(Graph Convolutional Network combined with Bidirectional Long short-term memory and ATTenTion mechanism)。首先,使用一维卷积神经网络(1D-CNN)提取初始特征;其次,依次使用图卷积网络(GCN)和双向长短期记忆(Bi-LSTM)网络分别提取空间特征和时间特征;再次,利用自注意力机制处理特征并重新分配权重;最后,输入全连接网络获得RUL预测结果。使用商用模块化航空推进系统仿真(C-MAPSS)数据集验证所提模型的有效性。实验结果显示,与先进模型相比,所提模型的Score分数在3个数据子集上取得最小值,在1个数据子集上取得次小值;均方根误差(RMSE)在1个数据子集上取得最小值,在3个数据子集上取得次小值。消融实验结果也验证了所提模型的各模块能有效提升预测精度。
基金the National Natural Science Foundation of China (U20A20225, U2013601)the Fundamental Research Funds for the Central Universities+3 种基金the Natural Science Foundation of Hefei (2021032)the Key Research and Development Plan of Anhui Province(202004a05020058)the CAAI-Huawei Mind Spore Open Fundand University of Science and Technology of China-NIO Intelligent Electric Vehicle Joint Project。
文摘在结构健康监测系统中重构缺失响应数据对于准确评估结构工作状况至关重要。提出了一种基于双向长短期记忆网络和注意力机制的缺失振动响应重构网络——序列到序列-双向长短时记忆网络-注意力模型。该网络在序列到序列(sequence to sequence,Seq2Seq)架构的基础上,将响应重构问题建模为序列生成问题,利用数据间潜在的时空关系显著提高模型的重构性能。此外,提出了一种基于均值平滑的损失计算方法评估模型的整体性能。通过对八自由度振动系统数值算例以及道林厅人行桥实际监测数据的研究,验证了所提出模型的鲁棒性与准确性。试验结果表明,该模型在不同噪声环境下均能胜任响应重构任务,在低信噪比的情况下仍表现出优异的重构性能。