准确的健康状态(state of health,SOH)估算可以确保锂离子电池安全可靠运行,延长其使用寿命。针对当前许多健康特征无法表征电池老化机理,异常工况时无法准确追踪SOH变化趋势的问题,本文提出一种经验模型与数据驱动相结合的SOH估算方法...准确的健康状态(state of health,SOH)估算可以确保锂离子电池安全可靠运行,延长其使用寿命。针对当前许多健康特征无法表征电池老化机理,异常工况时无法准确追踪SOH变化趋势的问题,本文提出一种经验模型与数据驱动相结合的SOH估算方法。将锂离子电池负极固体电解质界面(SEI)膜增厚机理融入Arrhenius定律中构建经验模型,然后采用最小二乘法进行参数辨识,并分别计算每个参数与容量的Spearman相关系数。结果表明,它们与容量衰退都具有强相关性,可以作为估算SOH的健康特征。此外,为了克服双向长短期记忆(bidirectional long and short term memory,BiLSTM)网络参数较多且容易陷入过拟合的问题,本文使用减平均优化(subtraction average based optimizer,SABO)算法对BiLSTM的超参数进行寻优,建立SOH估算模型。最后,采用实验测试数据与美国航空航天局(National Aeronautics and Space Administration,NASA)数据验证了所提方法的适应性,并与长短期记忆(long and short-term memory,LSTM)网络、双向长短期记忆网络以及粒子群优化(particle swarm optimization,PSO)的双向长短期记忆网络3种算法的估算结果进行对比。结果表明,采用SABO-BiLSTM算法估算4节电池SOH的平均绝对百分比误差分别为0.043%、0.053%、0.259%、0.230%,相较于LSTM降低了94.58%、 92.85%、 88.65%、 90.13%,相较于BiLSTM降低了89.11%、91.60%、77.90%、76.41%,相较于PSO-BiLSTM降低了58.65%、58.91%、65.37%、69.29%。展开更多
提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem...提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem指纹和PaDEL分子描述符对药物特征信息进行提取。其次,使用套索回归(least absolute shrinkage and selection operator,Lasso)方法消除对分类无关的特征,并利用重复编辑最近邻(repeated edited nearest neighbors,RENN)方法对数据进行平衡处理,得到最优特征向量。最后,将最优特征向量输入结合自注意力机制和双向长短时记忆网络的分类器预测DDIs。基于五折交叉验证,同时与其它预测方法进行比较,本工作所提出的方法在两个数据集上获得较高的预测准确率。为了综合评价SA-BiLSTM的性能,对药物-药物相互作用网络进行验证。实验结果表明,SA-BiLSTM表现出优秀的预测能力,可以为DDIs的预测提供一种新的思路。展开更多
针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次...针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次,根据模式层规则来构建数据层,采用双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)模型捕捉输入序列的上下文信息作为条件随机场(Conditional Random Fields,CRF)的输入,对标签序列进行建模标注以提取关键知识信息,并通过词向量模型(Word2Vec)来计算纺纱相关的文本数据之间的相似度来实现知识融合,从而提升分词准确率;最后通过Neo4j图数据库存储抽取到的纺纱工艺知识,并可视化展示原料、工艺等复杂关系网络,可帮助纺织企业优化生产、提升决策效率。实例分析结果表明,该知识抽取方法具有较高的召回率(88.7%)、准确率(89.9%)和F 1值(89.3%),优于BiLSTM-CRF和LSTM-CRF模型,抽取效果有了显著提升。展开更多
文摘准确的健康状态(state of health,SOH)估算可以确保锂离子电池安全可靠运行,延长其使用寿命。针对当前许多健康特征无法表征电池老化机理,异常工况时无法准确追踪SOH变化趋势的问题,本文提出一种经验模型与数据驱动相结合的SOH估算方法。将锂离子电池负极固体电解质界面(SEI)膜增厚机理融入Arrhenius定律中构建经验模型,然后采用最小二乘法进行参数辨识,并分别计算每个参数与容量的Spearman相关系数。结果表明,它们与容量衰退都具有强相关性,可以作为估算SOH的健康特征。此外,为了克服双向长短期记忆(bidirectional long and short term memory,BiLSTM)网络参数较多且容易陷入过拟合的问题,本文使用减平均优化(subtraction average based optimizer,SABO)算法对BiLSTM的超参数进行寻优,建立SOH估算模型。最后,采用实验测试数据与美国航空航天局(National Aeronautics and Space Administration,NASA)数据验证了所提方法的适应性,并与长短期记忆(long and short-term memory,LSTM)网络、双向长短期记忆网络以及粒子群优化(particle swarm optimization,PSO)的双向长短期记忆网络3种算法的估算结果进行对比。结果表明,采用SABO-BiLSTM算法估算4节电池SOH的平均绝对百分比误差分别为0.043%、0.053%、0.259%、0.230%,相较于LSTM降低了94.58%、 92.85%、 88.65%、 90.13%,相较于BiLSTM降低了89.11%、91.60%、77.90%、76.41%,相较于PSO-BiLSTM降低了58.65%、58.91%、65.37%、69.29%。
文摘提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem指纹和PaDEL分子描述符对药物特征信息进行提取。其次,使用套索回归(least absolute shrinkage and selection operator,Lasso)方法消除对分类无关的特征,并利用重复编辑最近邻(repeated edited nearest neighbors,RENN)方法对数据进行平衡处理,得到最优特征向量。最后,将最优特征向量输入结合自注意力机制和双向长短时记忆网络的分类器预测DDIs。基于五折交叉验证,同时与其它预测方法进行比较,本工作所提出的方法在两个数据集上获得较高的预测准确率。为了综合评价SA-BiLSTM的性能,对药物-药物相互作用网络进行验证。实验结果表明,SA-BiLSTM表现出优秀的预测能力,可以为DDIs的预测提供一种新的思路。
文摘针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次,根据模式层规则来构建数据层,采用双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)模型捕捉输入序列的上下文信息作为条件随机场(Conditional Random Fields,CRF)的输入,对标签序列进行建模标注以提取关键知识信息,并通过词向量模型(Word2Vec)来计算纺纱相关的文本数据之间的相似度来实现知识融合,从而提升分词准确率;最后通过Neo4j图数据库存储抽取到的纺纱工艺知识,并可视化展示原料、工艺等复杂关系网络,可帮助纺织企业优化生产、提升决策效率。实例分析结果表明,该知识抽取方法具有较高的召回率(88.7%)、准确率(89.9%)和F 1值(89.3%),优于BiLSTM-CRF和LSTM-CRF模型,抽取效果有了显著提升。