提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem...提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem指纹和PaDEL分子描述符对药物特征信息进行提取。其次,使用套索回归(least absolute shrinkage and selection operator,Lasso)方法消除对分类无关的特征,并利用重复编辑最近邻(repeated edited nearest neighbors,RENN)方法对数据进行平衡处理,得到最优特征向量。最后,将最优特征向量输入结合自注意力机制和双向长短时记忆网络的分类器预测DDIs。基于五折交叉验证,同时与其它预测方法进行比较,本工作所提出的方法在两个数据集上获得较高的预测准确率。为了综合评价SA-BiLSTM的性能,对药物-药物相互作用网络进行验证。实验结果表明,SA-BiLSTM表现出优秀的预测能力,可以为DDIs的预测提供一种新的思路。展开更多
【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SO...【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SOH估计方法。【方法】首先,建立电池充电时间、电压和温度三者间的长期依赖关系云图;其次,设计一个时空信息捕捉模块,将该模块捕获的长期依赖信息作为扩散模型的生成条件,赋予扩散模型电池SOH数据生成能力;最后,利用双向长短期记忆网络(Bi-LSTM)对部分由原始数据和生成数据混合而成的电池数据集进行训练,并利用剩余的原始数据作为测试集对所提方法进行验证。【结果】验证结果表明,该方法不仅可以减少收集电池数据类型的周期和成本,而且能够有效预测电池SOH。【结论】该方法在电池SOH估计上具备良好的精度,可进一步探索其他电池数据集组合,优化模型结构,提高电池管理系统。展开更多
文摘提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem指纹和PaDEL分子描述符对药物特征信息进行提取。其次,使用套索回归(least absolute shrinkage and selection operator,Lasso)方法消除对分类无关的特征,并利用重复编辑最近邻(repeated edited nearest neighbors,RENN)方法对数据进行平衡处理,得到最优特征向量。最后,将最优特征向量输入结合自注意力机制和双向长短时记忆网络的分类器预测DDIs。基于五折交叉验证,同时与其它预测方法进行比较,本工作所提出的方法在两个数据集上获得较高的预测准确率。为了综合评价SA-BiLSTM的性能,对药物-药物相互作用网络进行验证。实验结果表明,SA-BiLSTM表现出优秀的预测能力,可以为DDIs的预测提供一种新的思路。
文摘【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SOH估计方法。【方法】首先,建立电池充电时间、电压和温度三者间的长期依赖关系云图;其次,设计一个时空信息捕捉模块,将该模块捕获的长期依赖信息作为扩散模型的生成条件,赋予扩散模型电池SOH数据生成能力;最后,利用双向长短期记忆网络(Bi-LSTM)对部分由原始数据和生成数据混合而成的电池数据集进行训练,并利用剩余的原始数据作为测试集对所提方法进行验证。【结果】验证结果表明,该方法不仅可以减少收集电池数据类型的周期和成本,而且能够有效预测电池SOH。【结论】该方法在电池SOH估计上具备良好的精度,可进一步探索其他电池数据集组合,优化模型结构,提高电池管理系统。