期刊文献+
共找到303篇文章
< 1 2 16 >
每页显示 20 50 100
融合时空特征的双向ATT-LSTM航班延误预测
1
作者 罗凤娥 郭玲玉 +1 位作者 朱子垚 李玫 《航空计算技术》 2025年第1期17-21,27,共6页
航班延误预测对提高航空公司经济效益和旅客满意度具有重要意义。本研究提出了一种融合时空特征的双向注意力长短时记忆网络(Bi-ATT-LSTM)模型,旨在提升航班延误预测的准确性。该模型能够有效捕捉时间序列的动态特性及其空间依赖性。通... 航班延误预测对提高航空公司经济效益和旅客满意度具有重要意义。本研究提出了一种融合时空特征的双向注意力长短时记忆网络(Bi-ATT-LSTM)模型,旨在提升航班延误预测的准确性。该模型能够有效捕捉时间序列的动态特性及其空间依赖性。通过与随机森林模型和标准LSTM模型的对比实验,结果表明Bi-ATT-LSTM模型在复杂的时空数据背景下和多个数据集上显示出优越的性能。 展开更多
关键词 航班延误预测 双向长短记忆网络 注意力机制 空数据
在线阅读 下载PDF
基于长短时记忆网络的恒温水浴锅温度模型预测
2
作者 高兴泉 俞文博 段虹州 《河南科技》 2024年第2期34-39,共6页
【目的】由于恒温水浴锅温度系统存在强非线性及大滞后性,本研究提出一种基于长短时记忆网络的恒温水浴锅温度模型预测方法。【方法】首先,对采集到的数据进行标准化处理,寻找长短时记忆网络的最优结构及超参数,用来拟合出最佳的数据映... 【目的】由于恒温水浴锅温度系统存在强非线性及大滞后性,本研究提出一种基于长短时记忆网络的恒温水浴锅温度模型预测方法。【方法】首先,对采集到的数据进行标准化处理,寻找长短时记忆网络的最优结构及超参数,用来拟合出最佳的数据映射特征,并构建恒温水浴锅温度的动态数学模型。其次,通过模型对未来一段时间内的温度趋势进行预测。最后,使用本研究提出的方法与最小二乘法所预测的结果进行对比分析。【结果】本研究所提方法构建的模型的拟合度达到了98.2%,预测结果的MSE及MAE比最小二乘法模型分别降低了4.616、0.823。【结论】本研究所提方法具有更高的预测精度,对提高恒温水浴锅的生产效率及控制精度具有重要意义。 展开更多
关键词 恒温水浴锅 长短记忆网络 温度预测 数学模型
在线阅读 下载PDF
基于SVM-SARIMA-LSTM模型的城市用水量实时预测
3
作者 李轩 吴永强 +2 位作者 王佳伟 杨伟超 张天洋 《水电能源科学》 北大核心 2025年第3期36-39,6,共5页
为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋... 为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋势部分与气温、降水、风速、气压和相对湿度5个气象因素之间的关系,利用长短时记忆网络(LSTM)对波动性明显的残差部分进行关系捕捉,构建了SVM-SARIMA-LSTM用水量实时预测模型,并利用衡水市3个月时用水量数据和气象数据训练SVM-SARIMA-LSTM模型,以随后1周的实测数据作为验证集对模型预测性能进行评估。结果表明,SVM-SARIMA-LSTM模型的平均绝对百分比误差(E_(MAP))比SARIMA模型低4.502%,均方根误差(E_(RMSE))降低了39.084%,确定系数R^(2)提高了9.965%,最大绝对误差(E_(maxA))减小了55.946%,具有较好的应用价值。所建模型通过整合关键气象因素,准确地捕捉到城市用水量的季节性趋势及非季节性波动,展现了优良的泛化性。 展开更多
关键词 SARIMA模型 支持向量机 长短记忆神经网络 SVM-SARIMA-lstm模型 STL分解程序 气象因素 用水量预测
在线阅读 下载PDF
基于非集计和LSTM模型的港口水域船舶短时交通流预测研究
4
作者 蔡嘉诚 连峰 杨忠振 《中国航海》 北大核心 2025年第1期77-83,123,共8页
随着海运量的持续高涨,港区航道船舶交通流密度不断增加,港口水域通航环境日趋复杂,港口水域船舶短时交通流预测在航道交通组织与航行安全保障中的作用愈发重要。为解决集计预测模型精度低的问题,基于进港船舶自动识别系统(AIS)数据,采... 随着海运量的持续高涨,港区航道船舶交通流密度不断增加,港口水域通航环境日趋复杂,港口水域船舶短时交通流预测在航道交通组织与航行安全保障中的作用愈发重要。为解决集计预测模型精度低的问题,基于进港船舶自动识别系统(AIS)数据,采用非集计的方法构建长短时记忆网络(LSTM)与历史轨迹匹配的混合预测模型,用以计算港口水域船舶短时航行轨迹,把船舶航行轨迹与进港航道断面的交叉次数作为短时航道断面的船舶流量。基于2020年6—12月宁波舟山港水域的AIS数据的验证计算显示,非集计方法的预测精度高达80%,明显高于传统的集计方法,该方法的提出为港口实施航道交通流管控策略、提高航道利用率奠定了技术基础。 展开更多
关键词 非集计模型 船舶自动识别系统 长短记忆网络 港口航道 段轨迹预测
在线阅读 下载PDF
地铁短时客流预测的ATT-BiLSTM模型
5
作者 戚耀 王晨菡 +1 位作者 吴啸宇 王涛 《交通科技与经济》 2025年第1期89-96,共8页
为适应轨道交通客流变化规律,以提高地铁短时客流预测结果的准确度,且兼顾轨道交通客流变化的周期性和潮汐性,提出一种基于注意力机制的双向长短时记忆神经网络(BiLSTM)短时客流预测模型。首先,将处理后的地铁进出站客流数据以不同时间... 为适应轨道交通客流变化规律,以提高地铁短时客流预测结果的准确度,且兼顾轨道交通客流变化的周期性和潮汐性,提出一种基于注意力机制的双向长短时记忆神经网络(BiLSTM)短时客流预测模型。首先,将处理后的地铁进出站客流数据以不同时间粒度和节日类型作为预测因素,输入到模型中;其次,通过BiLSTM充分挖掘时间序列的全局特征进行初步预测;最后,再通过注意力机制对不同时间点的显著特征加权得出预测结果,提高模型的预测性能。以上海地铁四号线海伦路站的真实客流数据为对象,进行不同模型的对比实验,并通过4种评价指标(MAE、MAPE、RMSE、R^(2)),评价改进前后的模型客流预测准确性。实验结果表明,在评估指标上,文中提出的ATT-BiLSTM模型要优于单种神经网络预测模型。 展开更多
关键词 城市轨道交通 客流预测 双向长短记忆神经网络 注意力机制 机器学习
在线阅读 下载PDF
基于双向长短时记忆模型的中文分词方法 被引量:12
6
作者 张洪刚 李焕 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期61-67,共7页
中文分词是中文自然语言处理中的关键基础技术之一.目前,传统分词算法依赖于特征工程,而验证特征的有效性需要大量的工作.基于神经网络的深度学习算法的兴起使得模型自动学习特征成为可能.文中基于深度学习中的双向长短时记忆(BLSTM)神... 中文分词是中文自然语言处理中的关键基础技术之一.目前,传统分词算法依赖于特征工程,而验证特征的有效性需要大量的工作.基于神经网络的深度学习算法的兴起使得模型自动学习特征成为可能.文中基于深度学习中的双向长短时记忆(BLSTM)神经网络模型对中文分词进行了研究.首先从大规模语料中学习中文字的语义向量,再将字向量应用于BLSTM模型实现分词,并在简体中文数据集(PKU、MSRA、CTB)和繁体中文数据集(HKCity U)等数据集上进行了实验.实验表明,在不依赖特征工程的情况下,基于BLSTM的中文分词方法仍可取得很好的效果. 展开更多
关键词 深度学习 神经网络 双向长短记忆 中文分词
在线阅读 下载PDF
基于双向长短时记忆网络和自注意力机制的药物-药物相互作用预测
7
作者 张明香 顾海明 于彬 《青岛科技大学学报(自然科学版)》 CAS 2024年第5期149-158,共10页
提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem... 提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem指纹和PaDEL分子描述符对药物特征信息进行提取。其次,使用套索回归(least absolute shrinkage and selection operator,Lasso)方法消除对分类无关的特征,并利用重复编辑最近邻(repeated edited nearest neighbors,RENN)方法对数据进行平衡处理,得到最优特征向量。最后,将最优特征向量输入结合自注意力机制和双向长短时记忆网络的分类器预测DDIs。基于五折交叉验证,同时与其它预测方法进行比较,本工作所提出的方法在两个数据集上获得较高的预测准确率。为了综合评价SA-BiLSTM的性能,对药物-药物相互作用网络进行验证。实验结果表明,SA-BiLSTM表现出优秀的预测能力,可以为DDIs的预测提供一种新的思路。 展开更多
关键词 药物-药物相互作用 特征提取 重复编辑最近邻 双向长短记忆网络 自注意力机制
在线阅读 下载PDF
基于双向长短时记忆网络的刀具状态预测
8
作者 王子硕 王育锋 +1 位作者 郭育畅 高兴泉 《长江信息通信》 2024年第12期46-50,共5页
针对长短时记忆(Long-Short-Term Memory, LSTM)网络方法预测刀具状态仅考虑过去信息而忽略未来信息的问题,无法准确预测刀具状态,提出了一种基于双向长短时记忆(Bi-directional Long Short-Term Memory, Bi-LSTM)预测刀具状态的方法,... 针对长短时记忆(Long-Short-Term Memory, LSTM)网络方法预测刀具状态仅考虑过去信息而忽略未来信息的问题,无法准确预测刀具状态,提出了一种基于双向长短时记忆(Bi-directional Long Short-Term Memory, Bi-LSTM)预测刀具状态的方法,该方法首先利用主成分分析法(Principal components analysis, PCA)用以降维数据,然后,将降维处理后的数据输入到Bi-LSTM网络中,最后对刀具状态进行预测。通过实验对比,表明PCA结合Bi-LSTM网络的预测准确率达到98.3959%,优于LSTM网络和PCA结合LSTM网络,并且误差也小于其他两种模型,验证了该方法对于刀具状态预测的有效性。 展开更多
关键词 双向长短记忆网络 刀具状态 主成分分析法 预测准确度
在线阅读 下载PDF
双向长短时记忆模型训练中的空间平滑正则化方法研究 被引量:3
9
作者 李文洁 葛凤培 +1 位作者 张鹏远 颜永红 《电子与信息学报》 EI CSCD 北大核心 2019年第3期544-550,共7页
双向长短时记忆模型(BLSTM)由于其强大的时间序列建模能力,以及良好的训练稳定性,已经成为语音识别领域主流的声学模型结构。但是该模型结构拥有更大计算量以及参数数量,因此在神经网络训练的过程当中很容易过拟合,进而无法获得理想的... 双向长短时记忆模型(BLSTM)由于其强大的时间序列建模能力,以及良好的训练稳定性,已经成为语音识别领域主流的声学模型结构。但是该模型结构拥有更大计算量以及参数数量,因此在神经网络训练的过程当中很容易过拟合,进而无法获得理想的识别效果。在实际应用中,通常会使用一些技巧来缓解过拟合问题,例如在待优化的目标函数中加入L2正则项就是常用的方法之一。该文提出一种空间平滑的方法,把BLSTM模型激活值的向量重组成一个2维图,通过滤波变换得到它的空间信息,并将平滑该空间信息作为辅助优化目标,与传统的损失函数一起,作为优化神经网络参数的学习准则。实验表明,在电话交谈语音识别任务上,这种方法相比于基线模型取得了相对4%的词错误率(WER)下降。进一步探索了L2范数正则技术和空间平滑方法的互补性,实验结果表明,同时应用这2种算法,能够取得相对8.6%的WER下降。 展开更多
关键词 语音信号处理 空间平滑 双向长短记忆模型(lstm) 正则化 过拟合
在线阅读 下载PDF
基于扩散模型和双向长短期记忆网络的锂电池SOH估计
10
作者 柯欢 《河南科技》 2024年第19期5-11,共7页
【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SO... 【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SOH估计方法。【方法】首先,建立电池充电时间、电压和温度三者间的长期依赖关系云图;其次,设计一个时空信息捕捉模块,将该模块捕获的长期依赖信息作为扩散模型的生成条件,赋予扩散模型电池SOH数据生成能力;最后,利用双向长短期记忆网络(Bi-LSTM)对部分由原始数据和生成数据混合而成的电池数据集进行训练,并利用剩余的原始数据作为测试集对所提方法进行验证。【结果】验证结果表明,该方法不仅可以减少收集电池数据类型的周期和成本,而且能够有效预测电池SOH。【结论】该方法在电池SOH估计上具备良好的精度,可进一步探索其他电池数据集组合,优化模型结构,提高电池管理系统。 展开更多
关键词 电池健康状态 数据驱动 空信息 扩散模型 双向长短记忆网络
在线阅读 下载PDF
基于猎人猎物优化与双向长短时记忆组合模型的汽车出车率预测 被引量:3
11
作者 高雨虹 曲昭伟 宋现敏 《交通运输系统工程与信息》 EI CSCD 北大核心 2023年第1期198-206,264,共10页
汽车出车率预测对于交通管理者预先制定精准化管控方案、实施协调化统筹调度,以及调控汽车保有量规模具有重要意义。为此,本文提出一种基于猎人猎物优化算法与双向长短时记忆神经网络组合模型(HPO-BiLSTM)的汽车出车率预测方法。首先,... 汽车出车率预测对于交通管理者预先制定精准化管控方案、实施协调化统筹调度,以及调控汽车保有量规模具有重要意义。为此,本文提出一种基于猎人猎物优化算法与双向长短时记忆神经网络组合模型(HPO-BiLSTM)的汽车出车率预测方法。首先,分析汽车出车率的关键影响因素,提取出17个特征影响因子,结合标准化处理后的重构时间序列,基于随机森林算法进行变量的重要度评估,筛选出最优特征集合作为预测模型输入;其次,为解决神经网络算法容易陷入局部极值的难题,建立一种融合猎人猎物优化算法(HPO)与双向长短时记忆神经网络(BiLSTM)的组合预测模型,利用HPO的探索-开发机制,实现BiLSTM框架的动态化搭建与精细化调参;最后,结合北京市中心城区的汽车出车率数据集进行模型性能的测试与检验。结果表明:与自回归差分移动平均模型、灰色模型、卷积神经网络模型、长短时记忆神经网络模型以及双向长短时记忆神经网络模型等经典算法相比,HPO-BiLSTM模型在汽车出车率预测中的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了23.85%~54.38%、20.67%~57.40%、27.48%~59.32%,平均相对误差为-1.57%。说明本文提出的混合深度学习算法具有较高的预测精度与实用性能。 展开更多
关键词 城市交通 汽车出车率预测 双向长短记忆神经网络 猎人猎物优化算法 深度学习
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测
12
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 过零率 双向长短记忆网络 序注意力机制
在线阅读 下载PDF
基于量子海鸥优化和双向记忆的波浪能发电平台运动预报方法研究
13
作者 李明伟 徐瑞喆 +2 位作者 盛其虎 耿敬 张启昭 《哈尔滨工程大学学报》 北大核心 2025年第3期383-389,共7页
针对波浪能发电平台运动因风、浪、流的耦合作用从而难以预报的问题,本文提出了一种新的基于量子海鸥优化算法和双向长短期记忆神经网络的波浪能发电平台运动预报方法。引入双向长短期记忆网络模拟波浪能发电平台运动非线性动力系统;建... 针对波浪能发电平台运动因风、浪、流的耦合作用从而难以预报的问题,本文提出了一种新的基于量子海鸥优化算法和双向长短期记忆神经网络的波浪能发电平台运动预报方法。引入双向长短期记忆网络模拟波浪能发电平台运动非线性动力系统;建立了基于量子海鸥优化算法的双向长短期记忆神经网络波浪能发电平台运动网络超参优选方法;构建一种新的双向长短期记忆神经网络波浪能发电平台运动与量子海鸥优化算法相结合的波浪能发电平台运动深度学习组合预报方法。试验结果表明:与本文选择的模型相比,本文建立的预测网络具有更高的预测精度,并且量子海鸥优化算法在选择双向长短期记忆神经网络的波浪能发电平台运动的超参数时与选取的算法相比,获得了更合适的超参组合。 展开更多
关键词 波浪能发电平台运动 非线性动力系统 深度学习模型 双向长短记忆网络 网络超参优选 智能优化算法 海鸥优化算法 量子计算
在线阅读 下载PDF
基于WD-LSTM的宽带电磁辐射时序建模预测方法
14
作者 杨晨 宋欣蔚 岳云涛 《现代电子技术》 北大核心 2025年第6期9-15,共7页
无线通信技术的飞速发展以及包含相关功能产品的广泛使用,使得环境电磁场呈现复杂的变化特性,且城市电磁环境状况日益恶化,故进行电磁辐射的分析与预测对于潜在风险预警与控制至关重要。文中对北京市典型商业区核心街道连续时段的宽带... 无线通信技术的飞速发展以及包含相关功能产品的广泛使用,使得环境电磁场呈现复杂的变化特性,且城市电磁环境状况日益恶化,故进行电磁辐射的分析与预测对于潜在风险预警与控制至关重要。文中对北京市典型商业区核心街道连续时段的宽带电磁辐射进行了测量,并对其进行了短时傅里叶变换分析。分析结果显示,电磁辐射时变规律与人们的作息活动具有相关性,且受部分时段无线设备密集使用的影响,呈现出强烈的低频周期性和高频波动性,而这些特性会导致单一的时序建模方法预测效果变差。为此,提出了一种结合小波分解(WD)与长短时记忆(LSTM)模型的混合预测方法。该方法根据电磁辐射时频特性,将其分解为主要周期分量和细节分量进行分层预测,以适应复杂城市电磁环境状况。基于测量数据,将所提方法与其他典型时序预测模型进行对比,结果表明,该方法的预测准确度更高,并具有更强的异常值适应性与稳定性。 展开更多
关键词 宽带电磁辐射 间序列 小波分解 长短记忆模型 频特性 分层预测
在线阅读 下载PDF
双向长短时记忆神经网络在滩坝砂储层岩性识别中的应用 被引量:6
15
作者 陈钢花 张寓侠 +2 位作者 王军 张华锋 王莜文 《测井技术》 CAS 2023年第3期319-325,共7页
研究区致密滩坝砂储层油气储量丰富,勘探开发潜力较高,但存在埋藏深、单层厚度薄、渗透率超低、孔隙结构复杂以及单井自然产能极低的特征,储层划分与岩性识别困难。针对测井数据具有纵向时序连续的特点,构建一个双向长短时记忆神经网络(... 研究区致密滩坝砂储层油气储量丰富,勘探开发潜力较高,但存在埋藏深、单层厚度薄、渗透率超低、孔隙结构复杂以及单井自然产能极低的特征,储层划分与岩性识别困难。针对测井数据具有纵向时序连续的特点,构建一个双向长短时记忆神经网络(BiLSTM)岩性识别模型,采用随机森林方法对常规测井数据等参数进行特征选择,将选择的参数作为输入变量训练BiLSTM模型。应用该模型对测试集的井资料进行验证,结果表明模型的岩性识别准确率为0.86,取得了良好的应用效果,证明了BiLSTM模型适用于滩坝砂储层岩性识别。 展开更多
关键词 测井解释 深度学习 双向长短记忆神经网络 岩性识别 滩坝砂储层
在线阅读 下载PDF
基于长短时记忆网络的结构动态载荷预测方法
16
作者 樊昱玮 郭腾博 +3 位作者 李哲 洪良友 刘超 蒋东翔 《中国舰船研究》 CSCD 北大核心 2024年第6期228-236,共9页
[目的]针对传统代理模型无法处理具有时间依赖性的动态过程和异构数据的问题,提出一种基于长短时记忆网络(LSTM)的动态载荷代理模型方法。[方法]代理模型包含载荷特征编码和载荷响应解码2个模块。首先,通过载荷特征编码模块的LSTM对动... [目的]针对传统代理模型无法处理具有时间依赖性的动态过程和异构数据的问题,提出一种基于长短时记忆网络(LSTM)的动态载荷代理模型方法。[方法]代理模型包含载荷特征编码和载荷响应解码2个模块。首先,通过载荷特征编码模块的LSTM对动态外载荷时间序列进行特征提取;然后,将外载荷时序特征与结构参数特征进行融合,由载荷解码模块的LSTM进一步进行特征提取并生成最终输出,从而综合考虑动态外载荷时间序列和结构参数一维特征的异构数据输入,预测结构内力响应时间历程;最后,在有限元仿真数据集上对模型进行精度评估,并与其他代理模型方法进行对比。[结果]结果显示,该动态载荷代理模型的平均精度可达98%,高于其他对比方法,且计算速度相较于有限元方法更快。[结论]所提方法可解决时序-非时序异构数据的代理模型问题,具有精度高、效率高的优点,在快速迭代计算场景下能够发挥较大作用。 展开更多
关键词 结构优化 动态载荷 人工智能 代理模型 深度学习 长短记忆网络
在线阅读 下载PDF
基于HMM+LSTM算法的网纹蜜瓜数字孪生体生长模型设计
17
作者 陆棚 刘明堂 +5 位作者 吴姗姗 李斌 李世豪 王长春 杨阳蕊 江恩慧 《灌溉排水学报》 2025年第5期122-132,共11页
【目的】提高农业水资源利用效率,开展农作物生长过程全生命周期的数字孪生体构建,加快我国智慧农业进程、助力农民制订优化管理策略。【方法】以网纹蜜瓜为例,选取河南省花园口引黄灌区为典型研究区,在相应气候条件下开展网纹蜜瓜生长... 【目的】提高农业水资源利用效率,开展农作物生长过程全生命周期的数字孪生体构建,加快我国智慧农业进程、助力农民制订优化管理策略。【方法】以网纹蜜瓜为例,选取河南省花园口引黄灌区为典型研究区,在相应气候条件下开展网纹蜜瓜生长全过程室内试验,基于物联网技术的观测网络,获取了网纹蜜瓜生长过程各项环境指标和生长状态实时监测数据;采用3ds Max三维建模软件和Unity 3D可视化平台,开发了网纹蜜瓜数字孪生模型,采用隐马尔可夫(Hidden Markov Model,HMM)和长短期记忆网络(Long Short-Term Memory,LSTM)算法,构建了网纹蜜瓜生长过程智能化推演模型。【结果】模拟结果表明,网纹蜜瓜种、苗、花、叶、果不同生长周期的数字孪生体整体识别正确率较高,其中种周期与苗周期准确率为85.3%,网纹蜜瓜叶周期的准确率为78.6%,平均周期准确率为82.8%。【结论】本文提出的基于无线传感器网络的数据采集端系统、HMM+LSTM算法生成网纹蜜瓜孪生体三维生长模型,实现了智慧农业的精准、高效、非破坏性可视化全过程孪生模拟,可推广应用于其他农作物孪生体构建。 展开更多
关键词 数字孪生 网纹蜜瓜 隐马尔可夫模型HMM 长短记忆网络算法lstm 智慧农业
在线阅读 下载PDF
基于核主成分分析与长短时记忆网络的水电机组监测预警
18
作者 王勇飞 李晓飞 +3 位作者 孙雨欣 张健 郭鹏程 王仁本 《振动与冲击》 EI CSCD 北大核心 2024年第24期287-294,共8页
水电机组的可靠稳定运行对于区域电力系统安全极为重要,该文提出了一种基于核主成分分析(kernel principal component analysis, KPCA)和长短时记忆网络(long short-term memory, LSTM)的水电机组智能预警方法。开展水电机组多通道振动... 水电机组的可靠稳定运行对于区域电力系统安全极为重要,该文提出了一种基于核主成分分析(kernel principal component analysis, KPCA)和长短时记忆网络(long short-term memory, LSTM)的水电机组智能预警方法。开展水电机组多通道振动信号数据融合研究,通过KPCA方法去除了多通道信号间冗余,实现了原始数据的压缩表征,并获得了机组在稳态运行工况的T2(Hotelling’s Fsquared)和SPE(square prediction error)控制限,将其作为预警阈值对融合后信号进行异常状态识别。以LSTM为基础构建了时序预测模型,结合异常状态识别结果实现了水电机组状态预警功能。研究通过案例实施验证了所提方法的有效性,并与KPCA-RNN和KPCA-Informer等模型进行了对比,所提出KPCA-LSTM模型预测结果的R2系数大于0.97,预测偏差处于极低水平,性能优于对比模型。 展开更多
关键词 水电机组 长短记忆网络(lstm) 核主成分分析(KPCA) 预警阈值
在线阅读 下载PDF
基于SSA-CNN-BiLSTM组合模型的短时交通流量预测 被引量:2
19
作者 陆由付 孔维麟 +2 位作者 田垚 王庆斌 牟振华 《交通运输研究》 2024年第1期18-27,共10页
为改善城市道路交通拥堵状况,并为智能交通系统决策提供辅助手段,针对短时交通流的非线性和时序性特点,构建了一种基于麻雀搜索算法(SSA)优化的卷积神经网络(CNN)联合双向长短时记忆神经网络(BiLSTM)的组合模型以预测短时交通流量。首先... 为改善城市道路交通拥堵状况,并为智能交通系统决策提供辅助手段,针对短时交通流的非线性和时序性特点,构建了一种基于麻雀搜索算法(SSA)优化的卷积神经网络(CNN)联合双向长短时记忆神经网络(BiLSTM)的组合模型以预测短时交通流量。首先,对原始交通流数据进行异常值清洗、小波阈值去噪和归一化处理。然后,利用SSA算法对CNN与BiLSTM组合网络中的隐藏层单元数、初始学习率和L2正则化系数三个超参数迭代寻优。最后,将搜索得到的最优超参数组合输入搭建好的组合网络中进行训练和预测。实验结果显示:与粒子群优化(PSO)和灰狼优化(GWO)算法相比,SSA算法在网络超参数寻优过程中的收敛速度更快,全局寻优能力更强;与3种对比模型(CNNBiLSTM、BiLSTM和LSTM)相比,在5 min时间尺度划分下,SSA-CNN-BiLSTM组合模型的均方根误差(RMSE)分别降低了5.46、12.78、20.38,平均绝对百分比误差(MAPE)分别降低了0.49%、2.24%、3.11%;在15 min时间尺度划分下,SSA-CNN-BiLSTM组合模型的RMSE分别降低了9.70、28.42、41.18,MAPE分别降低了0.50%、1.98%、2.59%。研究表明,相比既有算法,该短时交通流量预测组合模型在精度和稳定性上都有所提升,可通过提供更精准的短时交通出行信息来改善道路交通状况。 展开更多
关键词 智能交通 交通流预测 卷积神经网络 城市道路 麻雀搜索算法 双向长短记忆神经网络
在线阅读 下载PDF
基于双向长短时记忆神经网络的步态时空参数脑肌电解码方法 被引量:3
20
作者 魏鹏娜 马鹏程 +1 位作者 张进华 洪军 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期142-150,共9页
针对脑电(EEG)信号对连续步态轨迹解码结果与实际轨迹相关性低的问题,提出一种基于双向长短时记忆(BiLSTM)神经网络的步态参数解码方法。首先,构建基于双向长短时记忆神经网络的步态时空参数解码模型,根据脑肌电信号特性设计解码模型的... 针对脑电(EEG)信号对连续步态轨迹解码结果与实际轨迹相关性低的问题,提出一种基于双向长短时记忆(BiLSTM)神经网络的步态参数解码方法。首先,构建基于双向长短时记忆神经网络的步态时空参数解码模型,根据脑肌电信号特性设计解码模型的超参数;其次,同步采集脑电、下肢运动相关肌肉的表面肌电信号(sEMG)和下肢关节运动信号,并对脑电和表面肌电信号的步态相关特征进行分析;然后,以多通道脑电和下肢运动相关表面肌电信号作为解码模型的输入,自动提取脑肌电融合信号中步态相关特征并构建膝踝关节运动轨迹与特征之间的非线性回归模型;最后,以多通道脑电作为解码模型的输入,构建步态相关脑电信号和表面肌电信号之间的非线性回归模型。实验结果表明:所提方法与传统支持向量机方法相比,对踝关节解码轨迹与实测轨迹形状相似性Pearson相关系数提高了0.12;与单独采用脑电、表面肌电信号和脑肌电信号平均绝对值特征融合信号进行解码方法相比,对踝关节解码轨迹与实测轨迹形状相似性Pearson相关系数分别提高了0.81、0.19和0.63。该方法可实现从脑电信号中对部分表面肌电信号波形的解码,解码波形和实测波形的平均Pearson相关系数值接近0.5,证明从脑电信号中可解码出肌肉通道的表面肌电信号波形,为下肢外骨骼主动连续控制的应用提供了新思路。 展开更多
关键词 脑电 表面肌电 双向长短记忆神经网络 步态空参数解码 Pearson相关
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部