期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
融合Bi-LSTM和条件随机场的在线学习情感分析方法 被引量:2
1
作者 周燕 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期687-694,共8页
为改善文本评论的细粒度属性识别和情感分析的准确度,提出基于双向长短期记忆(Bi-LSTM)和条件随机场(CRF)的属性级情感分析框架.将评论句的属性项提取和情感极性分析建模为序列标注问题,提出新的标注方案,在完成属性项提取的同时确定情... 为改善文本评论的细粒度属性识别和情感分析的准确度,提出基于双向长短期记忆(Bi-LSTM)和条件随机场(CRF)的属性级情感分析框架.将评论句的属性项提取和情感极性分析建模为序列标注问题,提出新的标注方案,在完成属性项提取的同时确定情感极性.结合词性(POS)嵌入和词嵌入作为神经网络输入,并融合Bi-LSTM和CRF网络,利用Bi-LSTM高效捕捉两个方向的词语关联,并将结果输入CRF网络以得到特征函数与输出标签之间的条件分布,实现高质量特征提取和准确标签分配.实验结果表明,结合所提新标注方案后,Bi-LSTM和CRF网络具有互补性,融合网络性能显著优于单一网络.此外,所提方案在公开数据集上取得了与当前先进方法大致相当的性能,且在外部知识库不可用的在线学习评论数据集上,所提方法的情感分析准确度优于当前其他先进的深度学习方法和学习评论分析方法,具有较好的应用价值. 展开更多
关键词 双向长短记忆网络 条件随机 情感分析 特征函数 词嵌入
在线阅读 下载PDF
基于随机提示的中文法律领域命名实体识别
2
作者 周鹏 何军 《计算机工程与设计》 北大核心 2025年第4期1167-1173,共7页
为解决中文法律领域命名实体识别面临的数据集稀缺和通用命名实体识别模型未充分利用BERT文本推理能力的问题,提出一种基于随机提示的命名实体识别方法。设计专用于法律领域的实体类型信息融合层,通过随机融合多角度的实体类型解释信息... 为解决中文法律领域命名实体识别面临的数据集稀缺和通用命名实体识别模型未充分利用BERT文本推理能力的问题,提出一种基于随机提示的命名实体识别方法。设计专用于法律领域的实体类型信息融合层,通过随机融合多角度的实体类型解释信息,结合BERT和BiLSTM,学习文本中融合实体类型解释信息的上下文语义特征。将命名实体识别任务建模为序列标注任务,通过CRF获取序列的标签信息。实验结果表明,该方法在中文法律领域命名实体识别任务中取得了显著的性能提升,F1值达到93.06%。 展开更多
关键词 中文法律实体 深度学习 命名实体识别 随机提示 双向长短记忆网络 序列标注 条件随机
在线阅读 下载PDF
基于概率预测与随机响应面法的新能源孤岛配电网实时风险评估与调控策略 被引量:7
3
作者 梁远升 程康 +4 位作者 王钢 李海锋 张思捷 徐真理 徐征 《电网技术》 EI CSCD 北大核心 2023年第12期4948-4957,共10页
高比例分布式电源的不确定性给孤岛配电网的稳定运行带来了的巨大的挑战。针对基于传统分布模型的源荷短期预测存在尖峰和重尾的缺点,采用双向长短时记忆(bidirectional long and short-term memory,BiLSTM)神经网络与非参数核密度法(ke... 高比例分布式电源的不确定性给孤岛配电网的稳定运行带来了的巨大的挑战。针对基于传统分布模型的源荷短期预测存在尖峰和重尾的缺点,采用双向长短时记忆(bidirectional long and short-term memory,BiLSTM)神经网络与非参数核密度法(kernel density method,KDE)结合的方法,构建了多场景及不同时间尺度下源荷预测误差的分布模型;并在此基础上,系统多时段运行调控过程中,考虑短时气象的不确定性波动,采用混合整数二阶锥规划(mixed-integer second-order cone programming,MISOCP)对潮流模型进行松弛,并由随机响应面(stochastic response surface,SRSM)得到系统的概率潮流;基于随机响应面法改进Sobol’法,建立计及源荷不确定性的孤岛配电网运行风险的全局灵敏度分析模型。基于此提出一种基于Bi LSTM-SRSM法的风险实时风险评估及调控策略。最后,采用IEEE33节点的辐射型配电网系统验证了所提方法的可行性。 展开更多
关键词 双向长短记忆神经网络 风险预警 随机响应面法 非参数核密度 全局灵敏度
在线阅读 下载PDF
基于混合双向LSTM的中间人攻击检测方法 被引量:4
4
作者 郭晓军 梁添鑫 +1 位作者 靳玮琨 孙雨生 《计算机工程与设计》 北大核心 2024年第12期3560-3567,共8页
针对局域网中基于ARP协议的中间人攻击检测准确率低、误报率高、泛化性差的问题,提出一种结合极端随机树分类器(ETC)和改进注意力机制(IAM)的双向长短时记忆网络(BiLSTM)的组合模型。利用ETC提取数据特征,通过改进的注意力机制模块处理... 针对局域网中基于ARP协议的中间人攻击检测准确率低、误报率高、泛化性差的问题,提出一种结合极端随机树分类器(ETC)和改进注意力机制(IAM)的双向长短时记忆网络(BiLSTM)的组合模型。利用ETC提取数据特征,通过改进的注意力机制模块处理中间人攻击流量时间序列信息,将组合特征输入BiLSTM实现对中间人攻击的检测。实验结果表明,在Kitsune数据集中,该模型的中间人攻击检测准确率达99.98%,在自建Ooter数据集中为99.94%。相较于主流的中间人攻击检测算法,该方法具有更高的准确率、更低的误报率及更好的泛化性。 展开更多
关键词 中间人攻击 地址解析协议 深度学习 双向长短记忆网络 注意力机制 极端随机树分类器 模型融合
在线阅读 下载PDF
基于句子级Lattice-长短记忆神经网络的中文电子病历命名实体识别 被引量:13
5
作者 潘璀然 王青华 +3 位作者 汤步洲 姜磊 黄勋 王理 《第二军医大学学报》 CAS CSCD 北大核心 2019年第5期497-506,共10页
目的提出一种基于Re-entity新分词方法的条件随机场(CRF)模型,并与双向长短记忆神经网络(BiLSTM)-CRF和Lattice-长短记忆神经网络(LSTM)进行比较。方法比较了现有实体识别方法和模型后,针对2018年全国知识图谱与语义计算大会(CCKS2018)... 目的提出一种基于Re-entity新分词方法的条件随机场(CRF)模型,并与双向长短记忆神经网络(BiLSTM)-CRF和Lattice-长短记忆神经网络(LSTM)进行比较。方法比较了现有实体识别方法和模型后,针对2018年全国知识图谱与语义计算大会(CCKS2018)任务一“电子病历命名实体识别”,提出基于Re-entity的CRF、BiLSTM-CRF、Lattice-LSTM方法,并在不同语料库训练不同参数级别的字符向量集。分别将各方法引入神经网络模型中进行模型性能对比实验,最后分别基于句子级和篇级输入句长进行对比研究。结果CRF模型在最优特征工程的结果下引入Re-entity方法后性能得到提高,句子级的Lattice-LSTM模型在该任务上取得了89.75%的严格F1-measure,优于CCKS2018任务一的最高结果(89.25%)。结论基于Re-entity新分词方法的CRF模型可利用中文临床药物知识库有效提高电子病历中药物的识别率,Re-entity方法可改善数据预处理阶段分词导致的错误累加,Lattice结构可以更好地结合字符和词序列的潜在语义信息,同时句子级输入能有效提高神经网络模型的识别准确率。 展开更多
关键词 计算机化病案系统 中文电子病历 实体识别 条件随机 双向长短记忆神经网络 点阵长短记忆神经网络
在线阅读 下载PDF
融合数据增强的互花米草入侵关联要素实体识别方法
6
作者 李忠伟 张文丰 +1 位作者 李永 李明轩 《计算机工程与设计》 北大核心 2025年第2期603-609,共7页
为解决互花米草入侵领域的训练数据匮乏,存在实体特征提取不准确的问题,提出一种融合数据增强的互花米草入侵关联要素识别深度学习模型。将训练数据采用同类实体随机交叉互换的方法进行数据增强,利用BERT预训练获得互花米草入侵关联要... 为解决互花米草入侵领域的训练数据匮乏,存在实体特征提取不准确的问题,提出一种融合数据增强的互花米草入侵关联要素识别深度学习模型。将训练数据采用同类实体随机交叉互换的方法进行数据增强,利用BERT预训练获得互花米草入侵关联要素的上下文信息;使用BiLSTM进一步提取特征,利用CRF得到实体的标签约束。通过对比不同模型在自建数据集上的精确率、召回率和F1分数,验证了该模型在互花米草入侵领域实体识别的有效性。 展开更多
关键词 命名实体识别 互花米草入侵 深度学习 数据增强 预训练模型 双向长短记忆网络 条件随机
在线阅读 下载PDF
融合多阶段特征的中文命名实体识别模型
7
作者 杨先凤 范玥 +1 位作者 李自强 汤依磊 《计算机工程与设计》 北大核心 2025年第1期37-43,共7页
针对中文命名实体识别中未充分利用完整的文本表示和语句特征的问题,提出一种融合多阶段特征的中文命名实体识别模型(LM-CNER)。采用全局注意力机制文本融合字符级嵌入与其预训练词向量,同时获取字符级特征和单词级特征。采用翻转长短... 针对中文命名实体识别中未充分利用完整的文本表示和语句特征的问题,提出一种融合多阶段特征的中文命名实体识别模型(LM-CNER)。采用全局注意力机制文本融合字符级嵌入与其预训练词向量,同时获取字符级特征和单词级特征。采用翻转长短时记忆网络(Re-LSTM)进行上下文特征提取,采用多头自注意力机制进行句法分析,并将二者进行拼接。使用条件随机场作为解码器,得到命名实体识别结果。在微博和简历两个数据集上的实验结果表明,该模型能够获取更加准确的文本表示和语句特征,提升模型的实体识别效果。 展开更多
关键词 命名实体识别 翻转长短记忆网络 注意力机制 编码器 预训练词向量 多阶段特征 条件随机
在线阅读 下载PDF
融合BERT BiLSTM CRF的城市内涝灾害风险要素识别方法研究 被引量:1
8
作者 张乐 张海龙 +1 位作者 李锋 吴敏 《安全与环境学报》 北大核心 2025年第8期3176-3188,共13页
为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素... 为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素识别的专业性、精准度要求较高等问题,结合自然灾害系统理论的风险要素框架,提出了一种基于双向编码器表征法-双向长短期记忆-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field,BERT-BiLSTM-CRF)的识别方法,并开展了一系列模型验证试验。对比试验结果表明,该模型在准确率、召回率、F_(1)三项指标上均有较好表现,其中准确率为84.62%,召回率为86.19%,F_(1)为85.35%,优于其他对比模型。消融试验结果表明,BERT预训练模型对于该模型性能有着更为显著的影响。综合上述试验结果,可以验证该模型能够有效识别城市内涝舆情信息中的各类风险要素,进而为城市内涝灾害风险管控的数智化转型提供研究依据。 展开更多
关键词 公共安全 城市内涝 双向编码器表征法 双向长短记忆网络 条件随机 舆情信息 风险要素识别
在线阅读 下载PDF
机床夹具设计知识图谱构建及应用 被引量:1
9
作者 张称心 孙家盛 段阳 《机电工程》 北大核心 2025年第1期106-116,共11页
针对目前机床夹具设计领域中存在的知识挖掘深度不足、利用率不高且过度依赖设计人员经验等问题,提出了一种基于自顶向下方式的机床夹具设计知识图谱构建方法。首先,将机床夹具设计知识分为原理规则类和功能描述类,利用本体建模语言(OWL... 针对目前机床夹具设计领域中存在的知识挖掘深度不足、利用率不高且过度依赖设计人员经验等问题,提出了一种基于自顶向下方式的机床夹具设计知识图谱构建方法。首先,将机床夹具设计知识分为原理规则类和功能描述类,利用本体建模语言(OWL)对这两类知识进行了本体建模,构建了知识图谱的模式层;其次,在模式层的指导下,以机床夹具设计原理规则文档和设计实例为数据源,利用双向长短期记忆网络-条件随机场算法(BiLSTM-CRF)对其进行了知识抽取,得到了结构化的机床夹具设计知识;然后,运用Neo4j图数据库存储结构化的机床夹具设计知识,得到了知识图谱的数据层;最后,以轴承套筒法兰的夹具设计为例,对该方法的可行性进行了验证;考虑到企业对同一夹具结构的不同技术需求,提出了一种基于图形数据科学算法(GDS)的相似元件替代法,对夹具知识图谱中47个定位元件节点进行了相似度计算,得到了1081条相似度数据样本,并构建了综合评判模型。研究结果表明:当相似度阈值设置为0.76时,将定位元件进行替换的精确率达到了84%。通过建立知识图谱,完成了机床夹具设计的两类知识的有效关联,为构建数据驱动的机床夹具智能设计奠定了基础。 展开更多
关键词 机械设计 智能设计 知识图谱 知识抽取 知识融合 本体建模语言 双向长短记忆网络-条件随机算法 图形数据科学算法
在线阅读 下载PDF
基于规则的天然气净化典型设备知识抽取方法
10
作者 纪天浩 彭传波 +3 位作者 裴爱霞 周健 刘持强 李大字 《石油与天然气化工》 北大核心 2025年第3期146-152,共7页
目的 含硫天然气净化生产易燃易爆、连续且过程复杂,安全风险大,故障归因与溯源对操作人员排查隐患、预防事故和保障安全生产至关重要,对工程人员操作有重要指导意义。知识图谱可高效存储管理化工生产资料,为故障溯源等任务提供数据支持... 目的 含硫天然气净化生产易燃易爆、连续且过程复杂,安全风险大,故障归因与溯源对操作人员排查隐患、预防事故和保障安全生产至关重要,对工程人员操作有重要指导意义。知识图谱可高效存储管理化工生产资料,为故障溯源等任务提供数据支持,提升运维效率。但现有生产运维资料多为非结构化文本,限制了知识图谱的构建。针对此问题,提出了一种双向长短期记忆网络(BiLSTM)与条件随机场(CRF)融合规则匹配的知识抽取方法。方法 首先采集工业过程的生产资料或运维资料,作为原始数据并进行预处理,接下来利用BiLSTM-CRF和规则匹配相结合的方法进行知识抽取,将抽取的数据存储于图数据库中。结果 以天然气净化厂闪蒸罐为例,使用该方法构建的知识图谱与专家经验构建的理论图谱结构基本一致。结论 实验结果表明,所提出的模型能有效地提取装置的生产资料或运维资料中的知识。构建的知识图谱增强了资料的可读性,便于运维人员查询和学习。 展开更多
关键词 天然气净化 长短记忆网络 条件随机 命名实体识别 知识抽取 知识图谱
在线阅读 下载PDF
基于双向编码器表示模型和注意力机制的食品安全命名实体识别 被引量:14
11
作者 姜同强 王岚熙 《科学技术与工程》 北大核心 2021年第3期1103-1108,共6页
针对于目前传统的命名实体识别模型在食品案件纠纷裁判文书领域的准确率不足的问题,在双向长短时记忆网络的基础上提出一种基于双向编码器表示模型(bidirectional encoder representations from transformers, Bert)和注意力机制的命名... 针对于目前传统的命名实体识别模型在食品案件纠纷裁判文书领域的准确率不足的问题,在双向长短时记忆网络的基础上提出一种基于双向编码器表示模型(bidirectional encoder representations from transformers, Bert)和注意力机制的命名实体识别模型。模型通过Bert层进行字向量预训练,根据上下文语意生成字向量,字向量序列输入双向长短期记忆网络(bi-directional long short-term memory, BiLSTM)层和Attention层提取语义特征,再通过条件随机场(conditional random field, CRF)层预测并输出字的最优标签序列,最终得到食品案件纠纷裁判文书中的实体。实验表明,该模型在食品纠纷法律文书上面的准确率和F1值分别达到了92.56%和90.25%,准确率相较于目前应用最多的BiLSTM-CRF模型提升了6.76%。Bert-BiLSTM-Attention-CRF模型通过对字向量的预训练,充分结合上下文语意,能够有效克服传统命名实体识别模型丢失字的多义性的问题,提高了食品案件纠纷裁判文书领域命名实体识别的准确率。 展开更多
关键词 命名实体识别 字向量 裁判文书 双向长短记忆网络 条件随机
在线阅读 下载PDF
基于BERT-BiLSTM-CRF的工业控制协议逆向工程
12
作者 连莲 李素敏 +1 位作者 宗学军 何戡 《沈阳工业大学学报》 北大核心 2025年第5期609-616,共8页
【目的】工业控制协议解析是工业互联网安全中的关键环节,但传统方法存在普适性差和准确率低的问题,导致协议解析效率低下,难以满足实际工业场景中对高精度和高适应性解析的需求。【方法】提出一种基于深度学习模型的工业控制协议逆向... 【目的】工业控制协议解析是工业互联网安全中的关键环节,但传统方法存在普适性差和准确率低的问题,导致协议解析效率低下,难以满足实际工业场景中对高精度和高适应性解析的需求。【方法】提出一种基于深度学习模型的工业控制协议逆向解析方法,通过结合BERT预训练模型、双向长短期记忆网络(BiLSTM)和条件随机场(CRF),提升协议解析的普适性和准确率,为工业控制系统的安全分析和漏洞挖掘提供技术支持。首先,利用BERT预训练模型对工业控制协议数据进行动态词向量编码,将协议数据转化为高维向量,以捕捉协议数据的语义信息。BERT预训练模型通过其强大的上下文理解能力,能够有效处理复杂且多样的协议数据。其次,采用双向长短期记忆网络对协议数据之间的关系以及协议数据与标签数据之间的关联性进行建模。双向长短期记忆网络能够捕获协议数据中的长距离依赖关系,从而更好地理解协议的结构和语义。最后,引入条件随机场作为约束条件,对工业控制协议的格式和语义进行最优预测。条件随机场通过引入标签之间的转移概率,进一步提高了预测的准确性和一致性。通过BERT预训练模型、双向长短期记忆网络和条件随机场的结合,实现了对工业控制协议的格式提取和语义分析。此外,本文方法还针对大规模协议数据进行了优化,确保其在处理复杂工业场景时的高效性和稳定性。【结果】针对三种典型工业控制协议展开实验,结果表明本文方法在格式提取和语义分析上的精度均超过96%,较传统方法有所提升,在不同协议上均表现出高适应性和准确性,能够有效识别字段边界与语义信息。【结论】本文方法显著提升了工业控制协议解析的普适性和准确率,为工业控制系统的安全分析提供了可靠的技术支持。未来将进一步优化模型,拓展应用场景,提升方法的实用性。 展开更多
关键词 工业控制协议 协议逆向工程 BERT预训练模型 双向长短记忆网络 条件随机 词向量 格式提取 语义分析
在线阅读 下载PDF
问答中的问句意图识别和约束条件分析 被引量:6
13
作者 孙鑫 王厚峰 《中文信息学报》 CSCD 北大核心 2017年第6期132-139,共8页
意图识别和约束条件分析是口语理解(SLU)中的两个重要过程。前者是分类问题,判断话语意图;后者可以看作序列标注问题,给关键信息标特定标签。该文提出了一种LSTM联合模型,同时结合了CRF和注意力机制。在ID问题上,将所有词语输出层向量... 意图识别和约束条件分析是口语理解(SLU)中的两个重要过程。前者是分类问题,判断话语意图;后者可以看作序列标注问题,给关键信息标特定标签。该文提出了一种LSTM联合模型,同时结合了CRF和注意力机制。在ID问题上,将所有词语输出层向量的加权和用于分类;在SF问题上,考虑标签之间的转移,计算标签序列在全局的可能性。在中文数据集和ATIS英文数据集上的实验验证了该文所提方法的有效性。 展开更多
关键词 长短记忆网络 条件随机 注意力机制
在线阅读 下载PDF
基于深度学习的暗网市场命名实体识别研究 被引量:3
14
作者 范晓霞 周安民 +1 位作者 郑荣锋 李孟铭 《信息安全研究》 2021年第1期37-43,共7页
对网络安全从业人员来说,基于暗网市场的研究扮演了一个非常重要的角色.与此同时,由于暗网市场文本数据本身的特点,针对暗网市场的命名实体识别研究面临着巨大的挑战.提出了一个针对暗网市场文本的命名实体识别系统(DNER),使用卷积神经... 对网络安全从业人员来说,基于暗网市场的研究扮演了一个非常重要的角色.与此同时,由于暗网市场文本数据本身的特点,针对暗网市场的命名实体识别研究面临着巨大的挑战.提出了一个针对暗网市场文本的命名实体识别系统(DNER),使用卷积神经网络(CNN)进行字符向量化以学习单词形态特征,使得系统能从单词级和字符级2方面学习特征.同时,将双向长短时记忆神经网络(Bi-LSTM)应用于暗网市场文本的命名实体识别,并采用CRF模型实现序列标签之间的约束性.此外,对暗网市场文本进行了词性标注.最后,比较了DNER和其他基本命名实体识别模型在暗网市场文本命名实体识别的效果.实验结果显示,DNER系统在暗网市场文本的准确率达到98.59%,召回率达到93.82%,F1值达到了96.15%. 展开更多
关键词 暗网市 命名实体识别 双向长短记忆网络 卷积神经网络 条件随机
在线阅读 下载PDF
基于BERT-BiLSTM-CRF模型的畜禽疫病文本分词研究 被引量:4
15
作者 余礼根 郭晓利 +3 位作者 赵红涛 杨淦 张俊 李奇峰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期287-294,共8页
针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectiona... 针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectional encoder representation from transformers)预训练语言模型进行文本向量化表示;通过双向长短时记忆网络(Bidirectional long short-term memory network,BiLSTM)获取上下文语义特征;由条件随机场(Conditional random field,CRF)输出全局最优标签序列。基于此,在CRF层后加入畜禽疫病领域词典进行分词匹配修正,减少在分词过程中出现的疫病名称及短语等造成的歧义切分,进一步提高了分词准确率。实验结果表明,结合词典匹配的BERT-BiLSTM-CRF模型在羊常见疫病文本数据集上的F1值为96.38%,与jieba分词器、BiLSTM-Softmax模型、BiLSTM-CRF模型、未结合词典匹配的本文模型相比,分别提升11.01、10.62、8.3、0.72个百分点,验证了方法的有效性。与单一语料相比,通用语料PKU和羊常见疫病文本数据集结合的混合语料,能够同时对畜禽疫病专业术语及疫病文本中常用词进行准确切分,在通用语料及疫病文本数据集上F1值都达到95%以上,具有较好的模型泛化能力。该方法可用于畜禽疫病文本分词。 展开更多
关键词 畜禽疫病 文本分词 预训练语言模型 双向长短记忆网络 条件随机
在线阅读 下载PDF
基于RF-BiLSTM模型的河流水质预测 被引量:9
16
作者 兰小机 贺永兰 武帅文 《长江科学院院报》 CSCD 北大核心 2024年第7期57-63,71,共8页
水环境中过量的氮、磷和高锰酸盐会对流域造成严重污染,准确预测这三类指标的含量对流域污染治理具有重要意义。然而,现有的模型预测精度低,输入因子的选择缺乏数理依据。基于此,以邕江为研究区域,提出一种RF-BiLSTM的混合网络模型。该... 水环境中过量的氮、磷和高锰酸盐会对流域造成严重污染,准确预测这三类指标的含量对流域污染治理具有重要意义。然而,现有的模型预测精度低,输入因子的选择缺乏数理依据。基于此,以邕江为研究区域,提出一种RF-BiLSTM的混合网络模型。该模型具有利用RF算法提取水质指标最优特征和利用BiLSTM模型提取输入数据的时间特征的优势,采用先降维后预测的方式对TN、TP和COD Mn进行预测,并将深度学习中的CNN、LSTM、BiLSTM和RF-LSTM作为基准模型与本研究所提模型作对比研究。研究结果表明,本研究模型预测TN、TP和COD Mn的平均绝对百分比误差(MAPE)分别达到了4.330%、6.781%和7.384%,均低于其他基准模型,预测结果具有较高的准确性和实用性,可为水环境的污染治理提供有效的技术支持。 展开更多
关键词 水质预测 特征选择 随机森林 双向长短记忆神经网络 深度学习
在线阅读 下载PDF
基于BiLSTM-CRF的航行通告命名实体识别研究 被引量:3
17
作者 项恒 杨明友 李猛 《计算机科学》 CSCD 北大核心 2024年第S02期115-120,共6页
针对当前国际民航组织对数字航行通告研究仅考虑对文本航行通告环境兼容,而未考虑对数字航行通告环境兼容的问题,提出一种基于BiLSTM-CRF的航行通告命名实体识别模型,以实现文本航行通告中相关实体的自动识别,并为转换数字航行通告提供... 针对当前国际民航组织对数字航行通告研究仅考虑对文本航行通告环境兼容,而未考虑对数字航行通告环境兼容的问题,提出一种基于BiLSTM-CRF的航行通告命名实体识别模型,以实现文本航行通告中相关实体的自动识别,并为转换数字航行通告提供所需的基本数据。通过构建航行通告语料标记数据集对LSTM,BiLSTM,BiLSTM-CRF 3种模型进行对比实验。实验结果显示,所提模型的精确率、召回率、F 1值分别为95%,95%,95%,验证了其在航行通告领域的有效性,证明本研究可以有效识别航行通告中的重要实体信息。 展开更多
关键词 航行通告 命名实体识别 深度学习 双向长短记忆网路 条件随机
在线阅读 下载PDF
基于多头注意力的中文电子病历命名实体识别 被引量:5
18
作者 肖丹 杨春明 +2 位作者 张晖 赵旭剑 李波 《计算机应用与软件》 北大核心 2024年第1期133-138,160,共7页
针对中文电子病历中复杂医疗实体的识别问题,提出一种联合特征与多头注意力相结合的实体识别方法。该方法使用字符、词性和词典组成的联合特征,利用BiLSTM和多头注意力分别提取句子的全局特征和局部特征,利用CRF结合所有特征完成实体标... 针对中文电子病历中复杂医疗实体的识别问题,提出一种联合特征与多头注意力相结合的实体识别方法。该方法使用字符、词性和词典组成的联合特征,利用BiLSTM和多头注意力分别提取句子的全局特征和局部特征,利用CRF结合所有特征完成实体标签的预测。实验结果表明,该方法F1值达89.16%,其中治疗和疾病两类实体分别达到94.76%和95.56%。 展开更多
关键词 命名实体识别 中文电子病历 多头注意力 长短记忆网络 条件随机
在线阅读 下载PDF
融合先验知识和字形特征的中文命名实体识别 被引量:1
19
作者 董永峰 白佳明 +1 位作者 王利琴 王旭 《计算机应用》 CSCD 北大核心 2024年第3期702-708,共7页
针对命名实体识别(NER)任务中相关模型通常仅对字符及相关词汇进行建模,未充分利用汉字特有的字形结构信息和实体类型信息的问题,提出一种融合先验知识和字形特征的命名实体识别模型。首先,采用结合高斯注意力机制的Transformer对输入... 针对命名实体识别(NER)任务中相关模型通常仅对字符及相关词汇进行建模,未充分利用汉字特有的字形结构信息和实体类型信息的问题,提出一种融合先验知识和字形特征的命名实体识别模型。首先,采用结合高斯注意力机制的Transformer对输入序列进行编码,并从中文维基百科中获取实体类型的中文释义,采用双向门控循环单元(BiGRU)编码实体类型信息作为先验知识,利用注意力机制将它与字符表示进行组合;其次,采用双向长短时记忆(BiLSTM)网络编码输入序列的远距离依赖关系,通过字形编码表获得繁体的仓颉码和简体的现代五笔码,采用卷积神经网络(CNN)提取字形特征表示,并根据不同权重组合繁体与简体字形特征,利用门控机制将它与经过BiLSTM编码后的字符表示进行组合;最后,使用条件随机场(CRF)解码,得到命名实体标注序列。在偏口语化的数据集Weibo、小型数据集Boson和大型数据集PeopleDaily上的实验结果表明,与基线模型MECT(Multi-metadata Embedding based Cross-Transformer)相比,所提模型的F1值别提高了2.47、1.20和0.98个百分点,验证了模型的有效性。 展开更多
关键词 命名实体识别 注意力机制 卷积神经网络 双向长短记忆 条件随机
在线阅读 下载PDF
基于ALBERT的中文简历命名实体识别 被引量:7
20
作者 余丹丹 黄洁 +1 位作者 党同心 张克 《计算机工程与设计》 北大核心 2024年第1期261-267,共7页
现有的电子简历实体识别方法准确率低,采用BERT预训练语言模型虽能取得较高的准确率,但BERT模型参数量过大,训练时间长,其实际应用场景受限,提出一种基于ALBERT的中文电子简历命名实体识别方法。通过轻量版ALBERT语言模型对输入文本进... 现有的电子简历实体识别方法准确率低,采用BERT预训练语言模型虽能取得较高的准确率,但BERT模型参数量过大,训练时间长,其实际应用场景受限,提出一种基于ALBERT的中文电子简历命名实体识别方法。通过轻量版ALBERT语言模型对输入文本进行词嵌入,获取动态词向量,解决一词多义的问题;使用BiLSTM获取上下文结构特征,深层次挖掘语义关系;将拼接后的向量输入到CRF层进行维特比解码,学习标签间约束关系,输出正确标签。实验结果表明,该方法在Resume电子简历数据集中取得了94.86%的F1值。 展开更多
关键词 电子简历 命名实体识别 预训练语言模型 双向长短记忆网络 条件随机 神经网络 深度学习
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部