期刊文献+
共找到204篇文章
< 1 2 11 >
每页显示 20 50 100
基于改进灰狼算法优化双向长短时记忆神经网络的水冷壁壁温预测 被引量:1
1
作者 詹毅 冯磊华 +1 位作者 杨锋 钟信 《热力发电》 CAS CSCD 北大核心 2024年第1期188-196,共9页
提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型... 提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型的隐藏层数量、学习率和正则化参数以提高模型的预测精度,采用新疆某电厂的数据进行预测仿真,结果表明:改进后的算法预测精度更高,在机组升、降负荷时,均可以预测到壁温的变化趋势,模型的平均均方根误差相比于长短时记忆(LSTM)神经网络、BiLSTM模型分别降低了9.86%和3.69%,且可以提前预测到水冷壁壁温的超温情况,对于预防水冷壁超温有重要意义。 展开更多
关键词 水冷壁 壁温预测 双向长短记忆神经网络 改进灰狼算法 自适应位置更新
在线阅读 下载PDF
基于二次分解的混合神经网络蜂窝流量预测
2
作者 段阿敏 张朝辉 《系统工程与电子技术》 北大核心 2025年第5期1687-1697,共11页
在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(c... 在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法将原始流量分解为多个子序列,利用K-Shape聚类算法重构为频率序列和趋势序列。为了更细致地揭示数据的内在结构,运用变分模态分解(variational mode decomposition,VMD)方法对频率序列进行二次分解,生成多维频率序列。然后,将一维趋势序列和多维频率序列分别输入至局部特征提取模块,其中单通道特征提取层利用一维卷积神经网络(one-dimensional convolution neural network,1DCNN)提取一维趋势序列的局部特征,而多通道特征提取层则结合卷积块注意力模块(convolutional block attention module,CBAM)捕捉多维频率序列中的关键信息。紧接着将提取到的特征向量分别输入到时序信息学习模块中,利用双向长短时记忆(bidirectional long short term memory,BiLSTM)网络和注意力机制学习时序变化规律,完成预测流量的输出。最后,通过对趋势序列和频率序列的预测结果求和,实现对蜂窝流量的准确预测。为了验证所提方法的有效性,利用公开数据集进行实验验证,并与多种不同方法进行对比。实验结果表明,所提预测方法展现出更优的预测性能,为蜂窝网络的智能管理和优化提供了有力支持。 展开更多
关键词 蜂窝流量预测 模态分解 卷积神经网络 双向长短记忆网络 卷积块注意力模块
在线阅读 下载PDF
基于双向长短时记忆神经网络的步态时空参数脑肌电解码方法 被引量:3
3
作者 魏鹏娜 马鹏程 +1 位作者 张进华 洪军 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期142-150,共9页
针对脑电(EEG)信号对连续步态轨迹解码结果与实际轨迹相关性低的问题,提出一种基于双向长短时记忆(BiLSTM)神经网络的步态参数解码方法。首先,构建基于双向长短时记忆神经网络的步态时空参数解码模型,根据脑肌电信号特性设计解码模型的... 针对脑电(EEG)信号对连续步态轨迹解码结果与实际轨迹相关性低的问题,提出一种基于双向长短时记忆(BiLSTM)神经网络的步态参数解码方法。首先,构建基于双向长短时记忆神经网络的步态时空参数解码模型,根据脑肌电信号特性设计解码模型的超参数;其次,同步采集脑电、下肢运动相关肌肉的表面肌电信号(sEMG)和下肢关节运动信号,并对脑电和表面肌电信号的步态相关特征进行分析;然后,以多通道脑电和下肢运动相关表面肌电信号作为解码模型的输入,自动提取脑肌电融合信号中步态相关特征并构建膝踝关节运动轨迹与特征之间的非线性回归模型;最后,以多通道脑电作为解码模型的输入,构建步态相关脑电信号和表面肌电信号之间的非线性回归模型。实验结果表明:所提方法与传统支持向量机方法相比,对踝关节解码轨迹与实测轨迹形状相似性Pearson相关系数提高了0.12;与单独采用脑电、表面肌电信号和脑肌电信号平均绝对值特征融合信号进行解码方法相比,对踝关节解码轨迹与实测轨迹形状相似性Pearson相关系数分别提高了0.81、0.19和0.63。该方法可实现从脑电信号中对部分表面肌电信号波形的解码,解码波形和实测波形的平均Pearson相关系数值接近0.5,证明从脑电信号中可解码出肌肉通道的表面肌电信号波形,为下肢外骨骼主动连续控制的应用提供了新思路。 展开更多
关键词 脑电 表面肌电 双向长短记忆神经网络 步态空参数解码 Pearson相关
在线阅读 下载PDF
基于长短时记忆循环神经网络的北京市糖尿病合并呼吸系统疾病患者入院预测研究 被引量:1
4
作者 朱倩 章萌 +6 位作者 胡耀余 徐小林 陶丽新 张杰 罗艳侠 郭秀花 刘相佟 《浙江大学学报(医学版)》 CAS CSCD 北大核心 2022年第1期1-9,共9页
目的:比较广义相加模型(GAM)和长短时记忆循环神经网络(LSTM-RNN)对糖尿病合并呼吸系统疾病患者入院频数的预测效果。方法:收集2014年1月1日至2019年12月31日北京市大气污染物、气象因素和呼吸系统疾病入院数据,基于LSTM-RNN预测糖尿病... 目的:比较广义相加模型(GAM)和长短时记忆循环神经网络(LSTM-RNN)对糖尿病合并呼吸系统疾病患者入院频数的预测效果。方法:收集2014年1月1日至2019年12月31日北京市大气污染物、气象因素和呼吸系统疾病入院数据,基于LSTM-RNN预测糖尿病合并呼吸系统疾病患者入院频数并与GAM对比,模型评价采用五折交叉验证法。结果:与GAM相比,LSTM-RNN具有较低的预测误差[均方根误差(RMSE)分别为21.21±3.30和46.13±7.60,P<0.01;平均绝对误差(MAE)分别为14.64±1.99和36.08±6.20,P<0.01]和较高的拟合优度(R^(2)值分别为0.79±0.06和0.57±0.12,P<0.01)。在性别分层中,预测女性入院频数时,LSTM-RNN三项指标均优于GAM(均P<0.05);预测男性入院频数时,两模型误差评价指标差异无统计学意义(均P>0.05)。在季节分层中,预测温暖季节的入院频数时,LSTM-RNN的RMSE和MAE均低于GAM(均P<0.05),R2值差异无统计学意义(P>0.05);预测寒冷季节入院频数时,两种模型的RMSE、MAE和R2值差异均无统计学意义(均P>0.05)。在功能区分层中,预测首都功能核心区入院频数时,LSTM-RNN的RMSE、MAE和R2值均优于GAM(均P<0.05)。结论:LSTM-RNN预测误差较小,拟合程度优,可作为污染天气提前精准配置医疗资源的预测手段。 展开更多
关键词 长短记忆循环神经网络 广义相加模型 呼吸系统疾病 糖尿病 日入院频数 预测
在线阅读 下载PDF
基于生成对抗网络和混合时空神经网络的入侵检测 被引量:3
5
作者 倪志伟 行鸿彦 +2 位作者 侯天浩 梁欣怡 王心怡 《电子测量技术》 北大核心 2024年第2期17-24,共8页
针对网络入侵检测领域存在检测准确率低的问题,研究异常流量样本少和分类器性能不佳时的入侵检测模型,提出一种基于改进生成对抗网络和混合时空神经网络的入侵检测模型。改进生成对抗网络通过学习异常流量样本的分布特性,生成具有特定... 针对网络入侵检测领域存在检测准确率低的问题,研究异常流量样本少和分类器性能不佳时的入侵检测模型,提出一种基于改进生成对抗网络和混合时空神经网络的入侵检测模型。改进生成对抗网络通过学习异常流量样本的分布特性,生成具有特定标签的人工异常流量样本;融合卷积神经网络和双向长短时记忆神经网络提取攻击流量的时空融合特征,利用注意力机制对时空融合特征进行加权,构建混合时空神经网络对网络流量进行分类预测。在UNSW-NB15数据集上对所提模型进行仿真实验,准确率和F1分数分别为92.93%和94.81%,表明所提模型能够有效改善原始数据集中的类别不平衡性问题,提高对异常流量样本的检测能力和网络入侵的检测准确率。 展开更多
关键词 网络入侵检测 生成对抗网络 卷积神经网络 双向长短记忆神经网络 注意力机制
在线阅读 下载PDF
基于串级双向长短时记忆神经网络的测井数据重构 被引量:6
6
作者 周伟 赵海航 +2 位作者 蒋云凤 易军 赖富强 《石油地球物理勘探》 EI CSCD 北大核心 2022年第6期1473-1480,I0009,共9页
测井数据是油气田开发和评价的基础,对于确定地下油气层位置、计算及评价油气储量等具有重要意义。然而,实际开采过程中井壁垮塌、仪器故障等因素往往导致部分深度的多条测井数据失真或缺失,而重新测井的成本高昂,施工难度大。为此,提... 测井数据是油气田开发和评价的基础,对于确定地下油气层位置、计算及评价油气储量等具有重要意义。然而,实际开采过程中井壁垮塌、仪器故障等因素往往导致部分深度的多条测井数据失真或缺失,而重新测井的成本高昂,施工难度大。为此,提出一种基于串级双向长短时记忆神经网络(CBi-LSTM)的测井数据重构方法,在不增加额外测量成本的情况下,充分考虑缺失数据点的前趋与后继之间的双向关联性及测井曲线之间的相关性,利用串级系统将所获估计值与已知测井曲线合并为新的输入,采用迭代更新策略完成对缺失数据块的重构。对苏里格气田4口井的测井数据进行补全重构实验,所得结果表明:文中测井数据重构方法具有较高精度,同时所用模型具有更强的鲁棒性和泛化能力。 展开更多
关键词 测井曲线 重构 长短记忆神经网络 串级双向长短记忆神经网络
在线阅读 下载PDF
基于双向长短时记忆网络和卷积神经网络的电力系统暂态稳定评估 被引量:17
7
作者 李向伟 刘思言 高昆仑 《科学技术与工程》 北大核心 2020年第7期2733-2739,共7页
基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现相量测量单位(PMU)的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优... 基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现相量测量单位(PMU)的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优布点上的时间序列特征,提出了一种将改进卷积神经网络(improved convolutional neural network,ICNN)与双向长短时记忆网络(bidirectional long short term memory network,BiLSTM)进行融合的评估方法。该方法首先利用BiLSTM提取电压、相角以及有功功率三种基本电气量的时间序列特征,随后通过卷积和池化操作对数据进行进一步的数据挖掘,最后利用轻量梯度提升机完成对数据的分类。为了避免出现过拟合现象,该方法还通过正则化、Dropout等方式提升模型的泛化性能。在新英格兰10机39节点上的算例表明,该方法能利用基本电气量数据进行暂态稳定评估,且在复杂条件下仍能保持较好的评估性能。 展开更多
关键词 暂态稳定评估 双向长短记忆网络 改进卷积神经网络 PMU数据采集
在线阅读 下载PDF
一种采用记忆神经网络和曲线形状修正的负荷预测方法 被引量:5
8
作者 张家安 李凤贤 +1 位作者 王铁成 郝妍 《电力工程技术》 北大核心 2024年第1期117-126,共10页
针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输... 针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。 展开更多
关键词 超短期负荷预测 Attention机制 双向长短记忆(BiLSTM)神经网络 负荷峰值 负荷标幺曲线 曲线形状修正
在线阅读 下载PDF
基于深度卷积长短时神经网络的视频帧预测 被引量:7
9
作者 张德正 翁理国 +1 位作者 夏旻 曹辉 《计算机应用》 CSCD 北大核心 2019年第6期1657-1662,共6页
针对视频帧预测中难以准确预测空间结构信息细节的问题,通过对卷积长短时记忆(LSTM)神经网络的改进,提出了一种深度卷积长短时神经网络的方法。首先,将输入序列图像输入到两个不同通道的深度卷积LSTM网络组成的编码网络中,由编码网络学... 针对视频帧预测中难以准确预测空间结构信息细节的问题,通过对卷积长短时记忆(LSTM)神经网络的改进,提出了一种深度卷积长短时神经网络的方法。首先,将输入序列图像输入到两个不同通道的深度卷积LSTM网络组成的编码网络中,由编码网络学习输入序列图像的位置信息变化特征和空间结构信息变化特征;然后,将学习到的变化特征输入到与编码网络通道数对应的解码网络中,由解码网络输出预测的下一张图;最后,将这张图输入回解码网络中,预测接下来的一张图,循环预先设定的次后输出全部的预测图。与卷积LSTM神经网络相比,在Moving-MNIST数据集上的实验中,相同训练步数下所提方法不仅保留了位置信息预测准确的特点,而且空间结构信息细节表征能力更强。同时,将卷积门控循环单元(GRU)神经网络的卷积层加深后,该方法在空间结构信息细节表征上也取得了提升,检验了该方法思想的通用性。 展开更多
关键词 视频帧预测 卷积神经网络 长短记忆神经网络 编码预测 卷积门控循环单元
在线阅读 下载PDF
基于双向长短期记忆神经网络的岩相预测方法 被引量:9
10
作者 熊玄辰 曹俊兴 +2 位作者 周鹏 许汉卿 程明 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期226-234,共9页
介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度... 介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度和伽马拟声波阻抗作为输入,以岩相作为标签,通过Bi-LSTM模型训练建立输入数据与岩相的非线性映射关系。将该方法应用于四川某浅层河道砂体勘探区岩相预测,结果表明,基于Bi-LSTM构建的岩相预测方法优于普通循环神经网络和普通LSTM,能够快速确定地下岩相,有效指示河道。基于Bi-LSTM的岩相预测方法能有效提取输入数据与岩相信息的非线性映射关系,对少井地区的岩相预测工作有较高的实用价值。 展开更多
关键词 深度学习 循环神经网络 双向长短期记忆神经网络 岩相预测
在线阅读 下载PDF
基于长短时记忆神经网络的河流水质预测研究 被引量:27
11
作者 张贻婷 李天宏 《环境科学与技术》 CAS CSCD 北大核心 2021年第8期163-169,共7页
准确高效地预测河流水质变化趋势对河流水环境治理与保护具有重要意义。该文利用广州市白坭河上自动监测站每2 h的水质数据,从单测站数据时序之间的相关性和上游测站的影响两方面,分别建立长短时记忆网络(LSTM)河流水质预测的循环神经... 准确高效地预测河流水质变化趋势对河流水环境治理与保护具有重要意义。该文利用广州市白坭河上自动监测站每2 h的水质数据,从单测站数据时序之间的相关性和上游测站的影响两方面,分别建立长短时记忆网络(LSTM)河流水质预测的循环神经网络模型。模型以氨氮浓度为输出变量,比较了不同输入变量下的模型预测效果,并以最优模型和常用的深度学习算法支持向量机(SVM)进行了比较。结果表明:单测站LSTM模型经输入变量特征选择后的预测结果比仅使用氨氮浓度单变量的时间序列预测更接近真实数值;对加入上游监测站的双测站LSTM模型,输入的变量经过特征选择时,模型预测效果优于全部水质变量作为输入的预测结果,也优于单测站LSTM模型;但不进行特征选择时,输入变量增加,模型学习到噪声而使精度下降;和SVM模型相比,最优特征组合的LSTM模型具有更好的预测效果。研究也表明,对输入变量进行特征选择后,LSTM模型是一种有潜力的河流水质预测方法。 展开更多
关键词 水质预测 长短记忆网络 循环神经网络 深度学习 特征选择
在线阅读 下载PDF
基于季节指数调整的循环神经网络风速时间序列预测 被引量:13
12
作者 姜明洋 徐丽 +1 位作者 张开军 马远兴 《太阳能学报》 EI CAS CSCD 北大核心 2022年第2期444-450,共7页
提出一种基于季节指数调整的神经网络风速预测方法。针对历史风速之间的非线性关系,运用神经网络非线性拟合能力并结合季节性指数调整对风速时间序列进行预测。通过时序图法和增广Dickey-Fullerd检验法判断时间序列的平稳性,结果表明该... 提出一种基于季节指数调整的神经网络风速预测方法。针对历史风速之间的非线性关系,运用神经网络非线性拟合能力并结合季节性指数调整对风速时间序列进行预测。通过时序图法和增广Dickey-Fullerd检验法判断时间序列的平稳性,结果表明该序列为非平稳序列。这种不稳定性说明时间序列中可能包含趋势、季节性、循环和不规则成分的一种或多种,为此采用时间序列分解模型对时间序列进行季节指数调整。最后采用LSTM和GRU神经网络预测风速,得到了较好的预测结果,且与未调整的数据预测结果及加法模型季节指数调整后的预测结果相比,基于乘法模型季节指数调整的2种神经网络预测结果有更高的风速预测精度。 展开更多
关键词 风速预测 组合预测 神经网络 长短记忆网络 门控循环网络 间序列分析
在线阅读 下载PDF
基于深度神经网络的UHVDC输电系统故障诊断 被引量:4
13
作者 张峥 原帅 +2 位作者 时伟光 解涛 郝成龙 《电网与清洁能源》 CSCD 北大核心 2024年第7期88-94,共7页
针对传统特高压直流(UHVDC)故障诊断方法存在阈值整定复杂、灵敏度低以及耐受过渡电阻能力较弱的问题,提出了一种将多尺度卷积神经网络(multi-scale convolutional neural network,MCNN)、双向长短时记忆网络(bidirectional long short-... 针对传统特高压直流(UHVDC)故障诊断方法存在阈值整定复杂、灵敏度低以及耐受过渡电阻能力较弱的问题,提出了一种将多尺度卷积神经网络(multi-scale convolutional neural network,MCNN)、双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)和注意力(Attention)机制相结合的UHVDC输电系统故障诊断方法。通过MCNN挖掘标准化后的故障数据不同尺度的空间特征;利用双层BiLSTM获取数据中的时序依赖特征;引入Attention机制为数据的不同特征向量合理分配注意力。结果表明:所提方法在4种评价指标上都优于其他对比算法,能够准确识别UHVDC输电系统的各种区内、外故障和测量故障,并且在面对高阻故障时仍然具有较高的分类精度。 展开更多
关键词 特高压直流 故障诊断 卷积神经网络 双向长短记忆网络 注意力机制
在线阅读 下载PDF
基于卷积神经网络-双向长短期记忆网络的人体活动识别方法 被引量:12
14
作者 孙彦玺 陈继斌 武东辉 《科学技术与工程》 北大核心 2022年第4期1517-1525,共9页
针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,... 针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,CNN-BiLSTM)进行人体活动识别(human activity recognition,HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(convolutional neural networks,CNN)自动提取人体活动数据的特征,再通过双向长短时记忆网络(bi-directional long-short term memory,BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明:基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。 展开更多
关键词 人体活动识别(HAR) 卷积神经网络(CNN) 双向长短记忆网络(BiLSTM) 深度学习 可穿戴传感器
在线阅读 下载PDF
基于时间误差的循环神经网络参数压缩 被引量:4
15
作者 王龙钢 刘世杰 +1 位作者 冯珊珊 李宏伟 《计算机工程与应用》 CSCD 北大核心 2020年第3期134-138,共5页
循环神经网络被广泛应用于各种序列数据处理任务中,如机器翻译、语音识别、图像标注等。基于循环神经网络的语言模型通常包含大量的参数,这一点在一定程度上限制了模型在移动设备或嵌入式设备上的使用。在低秩重构压缩的基础上,增加时... 循环神经网络被广泛应用于各种序列数据处理任务中,如机器翻译、语音识别、图像标注等。基于循环神经网络的语言模型通常包含大量的参数,这一点在一定程度上限制了模型在移动设备或嵌入式设备上的使用。在低秩重构压缩的基础上,增加时间误差重构函数,并采用长短时记忆网络中的输入激活机制,提出了一种基于时间误差的低秩重构压缩方法。多个数据集上的数值实验表明,该方法具有较好的压缩效果。 展开更多
关键词 循环神经网络 长短记忆网络 低秩重构压缩 基于间误差的低秩重构压缩
在线阅读 下载PDF
模型误差影响下基于CNN+BiLSTM神经网络的非圆信号目标直接跟踪算法 被引量:1
16
作者 尹洁昕 王鼎 +1 位作者 杨欣 杨宾 《电子学报》 EI CAS CSCD 北大核心 2024年第4期1315-1329,共15页
针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算... 针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算法首先利用多运动观测阵列信号各频带间的相关性与辐射源信号的非圆特性,建立模型误差影响下的扩展多站观测矢量;接着利用多个观测时隙内扩展多站观测矢量的信号子空间构造空时特征输入序列;然后设计基于CNN与BiLSTM混合神经网络的直接跟踪模型,通过训练实现对非圆目标的轨迹矢量直接估计.本文算法是从原始数据信号子空间中估计轨迹矢量的直接跟踪模式,相比传统“观测参数估计+滤波轨迹跟踪”的两步估计模式,具有更高的估计精度.由于本文算法在神经网络训练过程中学习到模型误差的信息,因此能够实现对多种误差的校正.仿真结果表明,本文算法较传统两步跟踪算法与现有直接跟踪算法均具有更高的轨迹估计精度,能够明显提升模型误差影响下多站协同跟踪的鲁棒性. 展开更多
关键词 直接跟踪 非圆信号 模型误差 卷积神经网络 双向长短记忆网络
在线阅读 下载PDF
基于循环神经网络的半监督动态软测量建模方法 被引量:20
17
作者 邵伟明 葛志强 +1 位作者 李浩 宋执环 《电子测量与仪器学报》 CSCD 北大核心 2019年第11期7-13,共7页
数据驱动的软测量技术被广泛应用于难测关键变量的在线实时预报。然而,在工业过程中,有标签样本通常十分稀少,且动态特性显著,导致传统有监督、静态的软测量建模方法性能不佳。为此,提出一种基于循环神经网络的建模方法,首先将传统带有... 数据驱动的软测量技术被广泛应用于难测关键变量的在线实时预报。然而,在工业过程中,有标签样本通常十分稀少,且动态特性显著,导致传统有监督、静态的软测量建模方法性能不佳。为此,提出一种基于循环神经网络的建模方法,首先将传统带有长短时记忆单元(LSTM)的循环神经网络(RNN)扩展为半监督模式,然后针对LSTM的不足,进一步提出一种基于注意力机制的改进方案。通过一个实际工业案例验证半监督LSTM-RNN在软测量应用中的有效性,以及所提出的改进方案的有效性。 展开更多
关键词 软测量 动态特性 半监督 循环神经网络 长短记忆单元 注意力机制
在线阅读 下载PDF
基于Bi-LSTM循环神经网络的风储系统控制策略 被引量:4
18
作者 李滨 蒙旭光 白晓清 《电力系统及其自动化学报》 CSCD 北大核心 2023年第12期20-28,共9页
“双碳”背景下风电的渗透率不断提高,将对电力系统的形态和运行机制产生深刻影响。本文提出了一种基于双向长短期记忆Bi-LSTM(bidirectional long short-term memory)循环神经网络的风储系统控制策略。采用双向长短时循环神经网络提取... “双碳”背景下风电的渗透率不断提高,将对电力系统的形态和运行机制产生深刻影响。本文提出了一种基于双向长短期记忆Bi-LSTM(bidirectional long short-term memory)循环神经网络的风储系统控制策略。采用双向长短时循环神经网络提取控制结果与风电场实际出力以及储能状态间的时序信息,通过构建基于双向长短时记忆循环神经网络的控制模型,使得风电场在多种运行工况下能够快速、准确地得到储能系统调节结果。基于实际风电场数据仿真结果表明,本文所提控制策略能够保证在一定经济效益的前提下,将风储系统控制误差保持在0.50%~1.37%。 展开更多
关键词 风储联合系统 控制策略 深度学习 双向长短记忆循环神经网络 数据驱动
在线阅读 下载PDF
基于循环神经网络的股指价格预测研究 被引量:12
19
作者 王理同 薛腾腾 +1 位作者 王惠敏 刘震 《浙江工业大学学报》 CAS 北大核心 2019年第2期186-191,共6页
利用基于注意力机制的循环神经网络构建股指价格的预测模型,可以很巧妙地提取出股指价格的各类影响因子的深层特征,与简单的单因子循环网络或者传统的多因子循环网络相比,该网络能够提高股指价格预测的准确性。为了加快模型的训练速度,... 利用基于注意力机制的循环神经网络构建股指价格的预测模型,可以很巧妙地提取出股指价格的各类影响因子的深层特征,与简单的单因子循环网络或者传统的多因子循环网络相比,该网络能够提高股指价格预测的准确性。为了加快模型的训练速度,减少模型参数量,在具体实验中,采用了去除注意力机制中解码环节的循环网络。仿真实验表明:在上证50股指每分钟价格的预测问题上,该网络模型比其他的传统网络模型的预测精度更高,而且预测效果与不去除解码环节的网络相比无明显差异,并且模型加快了对数据的处理速度,证实该方法是一种有效的股指价格预测方法。 展开更多
关键词 注意力机制 循环神经网络 长短记忆机制 股指价格预测
在线阅读 下载PDF
基于循环神经网络的电信行业容量数据预测方法 被引量:8
20
作者 丁尹 桑楠 +1 位作者 李晓瑜 吴飞舟 《计算机应用》 CSCD 北大核心 2021年第8期2373-2378,共6页
在电信运维的容量预测过程中,存在容量指标和部署业务种类繁多的问题。现有研究未考虑指标数据类型的差异,对所有类型的数据使用同种预测方法,使得预测效果参差不齐。为了提升指标预测效率,提出一种指标数据类型分类方法,利用该方法将... 在电信运维的容量预测过程中,存在容量指标和部署业务种类繁多的问题。现有研究未考虑指标数据类型的差异,对所有类型的数据使用同种预测方法,使得预测效果参差不齐。为了提升指标预测效率,提出一种指标数据类型分类方法,利用该方法将数据类型分为趋势型、周期型和不规则型。针对其中的周期型数据预测,提出基于双向循环神经网络(BiRNN)的周期型容量指标预测模型,记作BiRNN-BiLSTM-BI。首先,为分析容量数据的周期特征,提出一种忙闲分布分析算法;其次,搭建循环神经网络(RNN)模型,该模型包含一层BiRNN和一层双向长短时记忆网络(BiLSTM);最后,充分利用系统忙闲分布信息,对BiRNN输出的结果进行优化。与传统的三次指数平滑、差分自回归移动平均(ARIMA)模型和反向传播(BP)神经网络模型进行比较的实验结果表明,在统一日志数据集和分布式缓存数据集上,提出的BiRNN-BiLSTM-BI模型的均方误差(MSE)分别比对比模型中表现最优的模型降低了15.16%和45.67%,可见预测准确率得到了很大程度的提升。 展开更多
关键词 双向循环神经网络 长短记忆网络 容量预测 忙闲分布 智能运维
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部