期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于双向编码表示转换的双模态软件分类模型
1
作者 付晓峰 陈威岐 +1 位作者 孙曜 潘宇泽 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第11期2239-2246,共8页
针对已有方法在软件分类方面只考虑单一分类因素和精确率较低的不足,提出基于双向编码表示转换(BERT)的双模态软件分类方法.该方法遵循最新的国家标准对软件进行分类,通过集成基于代码的BERT(CodeBERT)和基于掩码语言模型的纠错BERT(Mac... 针对已有方法在软件分类方面只考虑单一分类因素和精确率较低的不足,提出基于双向编码表示转换(BERT)的双模态软件分类方法.该方法遵循最新的国家标准对软件进行分类,通过集成基于代码的BERT(CodeBERT)和基于掩码语言模型的纠错BERT(MacBERT)双向编码的优势,其中CodeBERT用于深入分析源码内容,MacBERT处理文本描述信息如注释和文档,利用这2种双模态信息联合生成词嵌入.结合卷积神经网络(CNN)提取局部特征,通过提出的交叉自注意力机制(CSAM)融合模型结果,实现对复杂软件系统的准确分类.实验结果表明,本文方法在同时考虑文本和源码数据的情况下精确率高达93.3%,与从奥集能和gitee平台收集并处理的数据集上训练的BERT模型和CodeBERT模型相比,平均精确率提高了5.4%.这表明了双向编码和双模态分类方法在软件分类中的高效性和准确性,证明了提出方法的实用性. 展开更多
关键词 软件分类 双向编码表示转换(BERT) 卷积神经网络 双模态 交叉自注意力机制
在线阅读 下载PDF
一种改进的NAT双向访问模型 被引量:3
2
作者 曹科 张海盛 《计算机应用》 CSCD 北大核心 2004年第B12期18-20,共3页
针对网络地址转换(NAT)技术的双向访问模型在应用和扩展上的局限性,提出了一种 改进的NAT双向访问模型。该模型仅用一个外部合法IP地址就能够提供灵活且受控的安全双向访 问,使位于内网和外网的主机都能够主动地建立连接并进行数据... 针对网络地址转换(NAT)技术的双向访问模型在应用和扩展上的局限性,提出了一种 改进的NAT双向访问模型。该模型仅用一个外部合法IP地址就能够提供灵活且受控的安全双向访 问,使位于内网和外网的主机都能够主动地建立连接并进行数据通信。 展开更多
关键词 网络地址转换 双向访问模型 DNS
在线阅读 下载PDF
融合语义路径与语言模型的元学习知识推理框架 被引量:3
3
作者 段立 封皓君 +2 位作者 张碧莹 刘江舟 刘海潮 《电子与信息学报》 EI CSCD 北大核心 2022年第12期4376-4383,共8页
针对传统推理方法无法兼顾计算能力与可解释性,同时在小样本场景下难以实现知识的快速学习等问题,该文设计一款融合语义路径与双向Transformer编码(BERT)的模型无关元学习(MAML)推理框架,该框架由基训练和元训练两个阶段构成。基训练阶... 针对传统推理方法无法兼顾计算能力与可解释性,同时在小样本场景下难以实现知识的快速学习等问题,该文设计一款融合语义路径与双向Transformer编码(BERT)的模型无关元学习(MAML)推理框架,该框架由基训练和元训练两个阶段构成。基训练阶段,将图谱推理实例用语义路径表示,并代入BERT模型微调计算链接概率,离线保存推理经验;元训练阶段,该框架基于多种关系的基训练过程获得梯度元信息,实现初始权值优化,完成小样本下知识的快速学习。实验表明,基训练推理框架在链接预测与事实预测任务中多项指标高于平均水平,同时元学习框架可以实现部分小样本推理问题的快速收敛。 展开更多
关键词 知识推理 语义路径 双向Transformer编码表示 模型无关元学习
在线阅读 下载PDF
一种基于特征融合的耳语音向正常音的转换方法 被引量:1
4
作者 庞聪 连海伦 +2 位作者 周健 王华彬 陶亮 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第5期777-782,共6页
使用耳语音的频谱包络来预估正常音的基频特征,这类算法在对正常音基频预测的准确性上存在一定不足,在合成语音自然度方面存在着明显欠缺,有时会出现音调失常等问题。本文提出一种声学特征融合的方法,通过双向长短期记忆(Bi‑long short‑... 使用耳语音的频谱包络来预估正常音的基频特征,这类算法在对正常音基频预测的准确性上存在一定不足,在合成语音自然度方面存在着明显欠缺,有时会出现音调失常等问题。本文提出一种声学特征融合的方法,通过双向长短期记忆(Bi‑long short‑term memory,BLSTM)深度网络来逐帧预测正常音基频。首先,使用STRAIGHT模型和相关代码,分别对耳语音和正常音语料进行预处理,提取耳语音的梅尔倒谱系数(Mel‑scale frequency cepstral coefficient,MFCC)、韵律及谱包络特征,正常音的基频与谱包络特征。然后使用BLSTM深度网络,分别建立耳语音和正常音谱包络特征之间映射关系,以及耳语音MFCC、韵律及谱包络特征对正常音基频F0的映射关系。最后根据耳语音的MFCC、韵律及谱包络特征获得对应的正常音基频和谱包络,使用STRAIGHT模型合成正常音。实验结果表明,相较于仅使用谱包络估计基频,采用此种方法引入语音韵律和MFCC的融合特征是对基频特征的良好补充,解决了音调失常的现象,转换后的语音在韵律上更加接近正常发音。 展开更多
关键词 语音转换 特征融合 韵律模型 STRAIGHT模型 双向长短期记忆
在线阅读 下载PDF
结构分析与BIM平台化的双向互用系统开发 被引量:5
5
作者 袁维华 熊自明 +2 位作者 王明洋 卢浩 刘一鸣 《现代电子技术》 北大核心 2019年第22期75-80,84,共7页
为促进建筑设计行业向集约、高效、精确的方向发展,国家大力推进BIM技术的应用。复杂、精细、非标准化的模型不断涌现,传统结构分析软件中的建模方式已无法满足广大用户的需求。为此,提出利用Revit软件建模及其3D可视化与ANSYS软件强大... 为促进建筑设计行业向集约、高效、精确的方向发展,国家大力推进BIM技术的应用。复杂、精细、非标准化的模型不断涌现,传统结构分析软件中的建模方式已无法满足广大用户的需求。为此,提出利用Revit软件建模及其3D可视化与ANSYS软件强大的结构分析功能相结合,二次开发Revit软件,以实现两种软件的优势互补。通过C#语言编写Revit API开发程序,将Revit模型数据信息导入到ANSYS,并使用ANSYS软件进行结构分析得出模型节点数据信息回传Revit,最终实现建筑模型的BIM平台化,具有广阔的推广前景。 展开更多
关键词 双向互用 BIM平台化 ANSYS结构分析 Revit建模 二次开发 模型转换
在线阅读 下载PDF
基于BiViTNet的轻量级驾驶员分心行为检测方法 被引量:2
6
作者 高尚兵 张莹莹 +2 位作者 王腾 张秦涛 刘宇 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期57-64,共8页
针对基于卷积神经网络的驾驶员分心行为检测,模型比较复杂、检测效率低下且缺少全局视觉表征的问题,提出了一种双分支并行双向交互神经网络BiViTNet(bidirectional interaction neural network based on vision transformer)对驾驶员行... 针对基于卷积神经网络的驾驶员分心行为检测,模型比较复杂、检测效率低下且缺少全局视觉表征的问题,提出了一种双分支并行双向交互神经网络BiViTNet(bidirectional interaction neural network based on vision transformer)对驾驶员行为进行识别,将ViT(vision transformer)引入到网络中对全局信息进行编码,在一定程度上提高检测精度。该网络由两个并行分支组成,第1个分支基于轻量级的CNN结构,第2个分支基于ViT结构。通过双向特征交互模块BiFIM(bidirectional feature interaction module)解决CNN Branch和ViT Branch之间特征不对称的问题,最后将两个分支的特征融合并对驾驶员行为进行检测。实验在自建的多视角驾驶员数据集上展开,验证集准确率达到97.18%,参数量为38.22 MB,计算量为271.20×10^(6)。研究表明:轻量级BiViTNet提高了驾驶员分心行为识别的准确率,可以在一定程度上辅助驾驶员的行车安全。 展开更多
关键词 交通运输工程 智能交通 分心行为检测 双分支并行双向交互神经网络 视觉转换 轻量级模型
在线阅读 下载PDF
基于BERT的水稻表型知识图谱实体关系抽取研究 被引量:23
7
作者 袁培森 李润隆 +1 位作者 王翀 徐焕良 《农业机械学报》 EI CAS CSCD 北大核心 2021年第5期151-158,共8页
针对水稻表型知识图谱中的实体关系抽取问题,根据植物本体论提出了一种对水稻的基因、环境、表型等表型组学实体进行关系分类的方法。首先,获取水稻表型组学数据,并进行标注和分类;随后,提取关系数据集中的词向量、位置向量及句子向量,... 针对水稻表型知识图谱中的实体关系抽取问题,根据植物本体论提出了一种对水稻的基因、环境、表型等表型组学实体进行关系分类的方法。首先,获取水稻表型组学数据,并进行标注和分类;随后,提取关系数据集中的词向量、位置向量及句子向量,基于双向转换编码表示模型(BERT)构建水稻表型组学关系抽取模型;最后,将BERT模型与卷积神经网络模型、分段卷积网络模型进行结果比较。结果表明,在3种关系抽取模型中,BERT模型表现更佳,精度达95.11%、F1值为95.85%。 展开更多
关键词 水稻表型 知识图谱 关系抽取 双向转换编码表示模型
在线阅读 下载PDF
云边协同联邦计算方法在铁路信号系统故障检测中的应用
8
作者 王延峰 谢泽会 《信息安全研究》 CSCD 北大核心 2024年第8期753-759,共7页
铁路信号系统是当下社会交通运力的主要承载系统,其对安全性有极高的要求.而由于铁路信号系统容易受到外界多种因素影响,易出现故障,需要设计一种针对铁路信号系统的实时故障检测方案,进而才能采取有效的维护措施.不同于传统的机器学习(... 铁路信号系统是当下社会交通运力的主要承载系统,其对安全性有极高的要求.而由于铁路信号系统容易受到外界多种因素影响,易出现故障,需要设计一种针对铁路信号系统的实时故障检测方案,进而才能采取有效的维护措施.不同于传统的机器学习(ML)故障检测方法,采用双向编码器表示转换器(BERT)深度学习(DL)模型进行实时的智能故障检测.该模型能够在处理故障检测任务时获取双向上下文的理解,从而更准确地捕捉句子中的语义关系,使得其对故障描述的理解更为精准.采用了云边协同的联邦计算方法,使得各铁路运营单位的数据可以在本地进行初步处理,然后将汇总后的梯度上传至云端进行模型训练,最终将训练得到的模型参数发送回各边缘设备,实现模型的更新,突破了模型的训练数据分散的限制,同时允许多个铁路运营单位在保持数据隐私的前提下共同训练BERT模型.研究结果表明,采用联邦边云计算方法进行BERT模型训练,在解决数据保密性问题的同时,有效提升了轨道交通故障检测的准确性与可靠性,优于目前在铁路信号系统领域已有的故障检测方案. 展开更多
关键词 铁路信号系统 故障检测 云边协同计算 联邦学习 双向编码表示转换
在线阅读 下载PDF
基于注意力机制的双BERT有向情感文本分类研究 被引量:12
9
作者 张铭泉 周辉 曹锦纲 《智能系统学报》 CSCD 北大核心 2022年第6期1220-1227,共8页
在计算社会科学中,理解政治新闻文本中不同政治实体间的情感关系是文本分类领域一项新的研究内容。传统的情感分析方法没有考虑实体之间情感表达的方向,不适用于政治新闻文本领域。针对这一问题,本文提出了一种基于注意力机制的双变换... 在计算社会科学中,理解政治新闻文本中不同政治实体间的情感关系是文本分类领域一项新的研究内容。传统的情感分析方法没有考虑实体之间情感表达的方向,不适用于政治新闻文本领域。针对这一问题,本文提出了一种基于注意力机制的双变换神经网络的双向编码表示(bi-directional encoder representations from transformers, BERT)有向情感文本分类模型。该模型由输入模块、情感分析模块、政治实体方向模块和分类模块四部分组成。情感分析模块和政治实体方向模块具有相同结构,都先采用BERT预训练模型对输入信息进行词嵌入,再采用三层神经网络分别提取实体之间的情感信息和情感方向信息,最后使用注意力机制将两种信息融合,实现对政治新闻文本的分类。在相关数据集上进行实验,结果表明该模型优于现有模型。 展开更多
关键词 情感分析 变换神经网络的双向编码表示 预训练模型 注意力机制 深度学习 机器学习 文本分类 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部