期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
融合BERT BiLSTM CRF的城市内涝灾害风险要素识别方法研究 被引量:1
1
作者 张乐 张海龙 +1 位作者 李锋 吴敏 《安全与环境学报》 北大核心 2025年第8期3176-3188,共13页
为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素... 为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素识别的专业性、精准度要求较高等问题,结合自然灾害系统理论的风险要素框架,提出了一种基于双向编码器表征法-双向长短期记忆-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field,BERT-BiLSTM-CRF)的识别方法,并开展了一系列模型验证试验。对比试验结果表明,该模型在准确率、召回率、F_(1)三项指标上均有较好表现,其中准确率为84.62%,召回率为86.19%,F_(1)为85.35%,优于其他对比模型。消融试验结果表明,BERT预训练模型对于该模型性能有着更为显著的影响。综合上述试验结果,可以验证该模型能够有效识别城市内涝舆情信息中的各类风险要素,进而为城市内涝灾害风险管控的数智化转型提供研究依据。 展开更多
关键词 公共安全 城市内涝 双向编码器表征 双向长短期记忆网络 条件随机场 舆情信息 风险要素识别
在线阅读 下载PDF
空管不正常事件风险信息抽取与识别方法研究 被引量:1
2
作者 王洁宁 王帅翔 孙禾 《安全与环境学报》 北大核心 2025年第4期1444-1454,共11页
目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词... 目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词抽取的双向编码器表征法和双向长短时记忆网络的深度学习模型(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory,BERT-BiLSTM)。该模型通过对不正常事件文本进行信息抽取,过滤其中无用信息,并将双向编码器表征法(Bidirectional Encoder Representations from Transformers,BERT)模型输出的特征向量序列作为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的输入序列,以对空管不正常事件文本风险识别任务进行对比试验。试验结果显示,在风险识别试验中,基于空管专业信息词抽取的BERT-BiLSTM模型相比于通用领域的BERT模型,风险识别准确率提升了3百分点。可以看出该模型有效提升了空管安全信息处理能力,能够有效识别空管部门日常运行中出现的不正常事件所带来的风险,同时可以为空管安全领域信息挖掘相关任务提供基础参考。 展开更多
关键词 安全工程 双向编码器表征 双向长短时记忆网络 空管不正常事件 风险识别
在线阅读 下载PDF
基于BERT-BiLSTM-CRF的隧道施工安全领域命名实体识别 被引量:5
3
作者 张念 周彩凤 +3 位作者 万飞 刘非 王耀耀 徐栋梁 《中国安全科学学报》 CSCD 北大核心 2024年第12期56-63,共8页
为解决隧道施工安全领域传统命名实体识别(NER)方法存在的实体边界模糊、小样本学习困难、特征信息提取不够全面准确等问题,提出一种基于变换器的双向编码器表征(BERT)-双向长短时记忆(BiLSTM)网络-条件随机场(CRF)模型的隧道施工事故... 为解决隧道施工安全领域传统命名实体识别(NER)方法存在的实体边界模糊、小样本学习困难、特征信息提取不够全面准确等问题,提出一种基于变换器的双向编码器表征(BERT)-双向长短时记忆(BiLSTM)网络-条件随机场(CRF)模型的隧道施工事故文本实体识别方法。首先,利用BERT模型将隧道施工事故文本编码得到蕴含语义特征的词向量;然后,将BERT模型训练后输出的词向量输入BiLSTM模型进一步获取隧道施工事故文本的上下文特征并进行标签概率预测;最后,利用CRF层的标注规则的约束,修正BiLSTM模型的输出结果,得到最大概率序列标注结果,从而实现对隧道施工事故文本标签的智能分类。将该模型与其他4种常用的传统NER模型在隧道施工安全事故语料数据集上进行对比试验,试验结果表明:BERT-BiLSTM-CRF模型的识别准确率、召回率和F 1值分别达到88%、89%和88%,实体识别效果优于其他基准模型。利用所建立的NER模型识别实际隧道施工事故文本中的实体,验证了其在隧道施工安全领域中的应用效果。 展开更多
关键词 变换器的双向编码器表征(bert) 双向长短时记忆(BiLSTM)网络 条件随机场(CRF) 隧道施工 安全领域 命名实体识别(NER) 深度学习
在线阅读 下载PDF
基于BBCAL模型的法条自动推送方法 被引量:5
4
作者 张青 王肖霞 +1 位作者 孙豫峰 杨风暴 《计算机工程与设计》 北大核心 2022年第3期827-834,共8页
针对公益诉讼案件内容复杂难以理解,专业术语特征难以有效提取等问题,提出一种面向公益诉讼案件的法条自动推送模型。使用BERT模型获取案件词向量,引入BiLSTM模型挖掘词向量更深层次的含义,解决长期依赖问题,设计CNN不同的卷积核尺寸提... 针对公益诉讼案件内容复杂难以理解,专业术语特征难以有效提取等问题,提出一种面向公益诉讼案件的法条自动推送模型。使用BERT模型获取案件词向量,引入BiLSTM模型挖掘词向量更深层次的含义,解决长期依赖问题,设计CNN不同的卷积核尺寸提取不同粒度的专业术语特征信息,引入注意力机制,获取与当前任务最相关的特征。实验结果表明,在公益诉讼案件数据上,该方法的法条自动推送F1值为89.04%,相比传统的方法效果均有提高,验证了其可行性。 展开更多
关键词 公益诉讼案件 条自动推送 基于变换器的双向编码器表征技术 卷积神经网络 注意力机制
在线阅读 下载PDF
融合BERT的多层次语义协同模型情感分析研究 被引量:16
5
作者 胡任远 刘建华 +2 位作者 卜冠南 张冬阳 罗逸轩 《计算机工程与应用》 CSCD 北大核心 2021年第13期176-184,共9页
由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续... 由于基于变换器的双向编码器表征技术(Bidirectional Encoder Representations from Transformers,BERT)的提出,改变了传统神经网络解决句子级文本情感分析问题的方法。目前的深度学习模型BERT本身学习模式为无监督学习,其需要依赖后续任务补全推理和决策环节,故存在缺乏目标领域知识的问题。提出一种多层协同卷积神经网络模型(Multi-level Convolutional Neural Network,MCNN),该模型能学习到不同层次的情感特征来补充领域知识,并且使用BERT预训练模型提供词向量,通过BERT学习能力的动态调整将句子真实的情感倾向嵌入模型,最后将不同层次模型输出的特征信息同双向长短期记忆网络输出信息进行特征融合后计算出最终的文本情感性向。实验结果表明即使在不同语种的语料中,该模型对比传统神经网络和近期提出的基于BERT深度学习的模型,情感极性分类的能力有明显提升。 展开更多
关键词 深度学习 文本情感分析 基于变换器的双向编码器表征技术(bert) 卷积神经网络(CNN) 协同结构
在线阅读 下载PDF
基于命名实体识别的水电工程施工安全规范实体识别模型 被引量:1
6
作者 陈述 张超 +2 位作者 陈云 张光飞 李智 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期19-26,共8页
为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全... 为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全规范的命名实体识别模型;以《水利水电工程施工安全防护技术规范》(SL714—2015)为例,计算命名实体识别模型精确率。结果表明:BERT-BILSTM-CRF模型准确率为94.35%,相比于3种传统方法,准确率显著提高。研究成果有助于水电工程施工安全规范知识智能管理,为施工安全隐患智能判别提供支撑。 展开更多
关键词 命名实体识别 水电工程施工 安全规范 双向编码器表征(bert) 双向长短期记忆神经网络(BILSTM) 条件随机场(CRF)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部