期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于双向时间卷积网络的半监督日志异常检测 被引量:4
1
作者 尹春勇 孔娴 《计算机应用研究》 CSCD 北大核心 2024年第7期2110-2117,共8页
由于日志解析准确率不高以及标记样本不足降低了异常检测的准确率,所以提出了一种新的基于日志的半监督异常检测方法。首先,通过改进字典的日志解析方法,保留了日志事件中的部分参数信息,从而提高日志信息的利用率和日志解析的准确率;然... 由于日志解析准确率不高以及标记样本不足降低了异常检测的准确率,所以提出了一种新的基于日志的半监督异常检测方法。首先,通过改进字典的日志解析方法,保留了日志事件中的部分参数信息,从而提高日志信息的利用率和日志解析的准确率;然后,使用BERT对模板中的语义信息进行编码,获得日志的语义向量;接着采用聚类的方法进行标签估计,缓解了数据标注不足的问题,有效提高了模型对不稳定数据的检测;最后,使用带有残差块的双向时间卷积网络(Bi-TCN)从两个方向捕获上下文信息,提高了异常检测的精度和效率。为了评估该方法的性能,在两个数据集上进行了评估,最终实验结果表明,该方法与最新的三个基准模型LogBERT、PLELog和LogEncoder相比,F 1值平均提高了7%、14.1%和8.04%,能够高效精准地进行日志解析和日志异常检测。 展开更多
关键词 日志解析 异常检测 半监督学习 双向时间卷积网络 上下文相关性
在线阅读 下载PDF
基于双向时间深度卷积网络的中文文本情感分类 被引量:14
2
作者 韩建胜 陈杰 +2 位作者 陈鹏 刘杰 彭德中 《计算机应用与软件》 北大核心 2019年第12期225-231,共7页
普通时间卷积网络对文本进行单向特征提取不能充分捕捉文本特征,对文本的分析能力较弱。提出一种基于双向时间卷积网络(Bi TCN)的情感分析模型。模型使用单向多层空洞因果卷积结构分别对文本进行前向和后向特征提取,将两个方向的序列特... 普通时间卷积网络对文本进行单向特征提取不能充分捕捉文本特征,对文本的分析能力较弱。提出一种基于双向时间卷积网络(Bi TCN)的情感分析模型。模型使用单向多层空洞因果卷积结构分别对文本进行前向和后向特征提取,将两个方向的序列特征融合后进行情感分类。研究并分析模型中卷积层数、卷积核大小和空洞因子三个参数对情感分类结果的影响。实验证明,与单向时间卷积网络情感分析模型相比,双向时间卷积网络模型在四个中文情感分析数据集上的准确率分别提高了2.5%、0.25%、2.33%和2.5%。 展开更多
关键词 情感分析 自然语言处理 空洞卷积 因果卷积 双向时间卷积网络
在线阅读 下载PDF
基于自优化神经网络的船舶运动模型辨识
3
作者 张浩晢 杨智博 +2 位作者 焦绪国 吕成兴 朱齐丹 《智能系统学报》 北大核心 2025年第3期571-583,共13页
精确的船舶运动模型是船舶自主系统的核心。为提高船舶运动建模精度,引入了改进的雪融优化器(improved snow ablation optimizer,ISAO);提出一种结合双向时间卷积网络(bidirectional temporal convolutional network,Bi-TCN)与注意力机... 精确的船舶运动模型是船舶自主系统的核心。为提高船舶运动建模精度,引入了改进的雪融优化器(improved snow ablation optimizer,ISAO);提出一种结合双向时间卷积网络(bidirectional temporal convolutional network,Bi-TCN)与注意力机制(attention mechanism,AM)的网络模型,即BITCA。进一步地,将ISAO与BITCA相结合,建立ISAO-BITCA船舶运动辨识混合模型。该模型利用Bi-TCN深度挖掘船舶运动序列在双向时间及空间维度下的隐藏特征,并引入AM以减少信息损失;基于ISAO,自主搜索并优化了BITCA模型的超参数组合。仿真实验结果表明,经过ISAO优化的BITCA模型在船舶航向角、偏航角速度、横摇角和总速度预测上的均方根误差(root mean square error,RMSE)分别降低了54.1%、28.21%、5.88%和40%,为船舶运动模型的准确辨识提供了一种有效手段。 展开更多
关键词 船舶运动建模 改进雪融优化器 双向时间卷积网络 注意力机制 优化 超参数 预测 辨识
在线阅读 下载PDF
基于EMVMD-GPSAO的短期风电功率网络预测模型
4
作者 陈万志 杜超 王天元 《电工电能新技术》 北大核心 2025年第7期90-98,共9页
针对风电时间序列数据的非线性、非平稳特征而导致的短期风电功率预测精度低问题,本文提出一种基于多频解构特征优选方法与改进的雪消融优化器(EMVMD-GPSAO)的短期风电功率网络预测模型。首先,采用多频解构特征优选方法(EMVMD)从原始风... 针对风电时间序列数据的非线性、非平稳特征而导致的短期风电功率预测精度低问题,本文提出一种基于多频解构特征优选方法与改进的雪消融优化器(EMVMD-GPSAO)的短期风电功率网络预测模型。首先,采用多频解构特征优选方法(EMVMD)从原始风电功率及气象数据中分解、筛选得到关键模态特征,提升训练数据质量;其次,构建融合双向时间卷积网络(BiTCN)和双向门控循环单元(BiGRU)的网络模型,采用改进的雪消融优化器(GPSAO)优化模型超参数,并通过多头注意力机制(MHA)实现时序特征的自适应加权;最后,对模型输出的预测序列进行反归一化处理,获得预测结果。场景数据集实验结果表明,所提模型的MAE降低超过58.02%,MAPE降低超过4.52%,RMSE降低超过46.59%,跨数据集R2维持在0.99以上。四种评价指标均优于对比模型,具有更高的预测精度与泛化能力。 展开更多
关键词 短期风电功率预测 多元变分模态分解 雪消融优化器 双向时间卷积网络 双向门控循环单元
在线阅读 下载PDF
基于模态分解和误差修正的短期电力负荷预测
5
作者 鄢化彪 李东丽 +2 位作者 黄绿娥 张航菘 姚龙龙 《电子测量技术》 北大核心 2025年第5期92-101,共10页
针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大... 针对电力负荷非线性、高波动性和强随机性等特性导致无法充分提取时序特征引起预测误差较大的问题,提出了基于改进的自适应白噪声完全集合经验模态分解和误差修正的双向时间卷积网络-双向长短期记忆网络短期电力负荷预测方法。先由最大信息系数筛选出与负荷高度相关的特征集,以削弱特征冗余;通过改进的自适应白噪声完全集合经验模态分解将高波动性的负荷分解为频率各异的本征模态分量和残差,以降低非平稳性;引入样本熵将复杂度相近的分量重构成新子序列,以降低计算量;然后,结合并行双向时间卷积网络提取不同尺度的特征,利用双向长短期记忆网络对负荷序列初步预测,使用麻雀优化算法对神经网络超参数调优;最后,误差序列通过误差修正模块对初始预测值进行修正。经实验验证,与其他预测模型相比,RMSE最多降低51.42%,最少降低34.26%,验证了模型的准确性和有效性。 展开更多
关键词 电力负荷 短期预测 自适应经验模态分解 样本熵 双向时间卷积网络 双向长短期记忆 麻雀搜索算法
在线阅读 下载PDF
基于特征交叉注意力机制融合的轴承故障诊断方法
6
作者 赵国超 刘崇德 +2 位作者 宋宇宁 金鑫 李伟华 《振动与冲击》 北大核心 2025年第12期228-237,共10页
为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convo... 为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convolutional neural network,CNN)和双向时间卷积网络(bidirectional temporal convolutional network,BiTCN)提取时频特征,通过交叉注意力机制(cross-attention mechanism,CA)融合时频特征的能力,充分提取原始信号故障特征,利用全连接层实现滚动轴承故障类型的精确诊断。试验研究表明:在含信噪比为9.32 dB、标准差为2.98的高斯白噪声的环境下,使用CNN-BiTCN-CA模型轴承故障分类准确率为99.88%,相较于使用CNN、BiTCN和结合自注意力机制的卷积神经网络(CNN with self-attention mechanism,CNN-SA)诊断轴承故障,准确率分别提升约22.79%、4.85%和4.19%;在引入信噪比为3.31 dB、标准差为5.96的高斯白噪声时,该模型仍然可以达到96.12%的诊断准确率。CNN-BiTCN-CA模型能够深入提取轴承信号中的故障特征,有效提高故障分类准确性。 展开更多
关键词 滚动轴承 故障诊断 双向时间卷积网络(BiTCN) 时频融合 交叉注意力机制(CA)
在线阅读 下载PDF
考虑数据分解和Gish-BiTCN-MHSA的短期光伏功率预测
7
作者 刘海鹏 何艳苹 +2 位作者 金怀平 方奇文 吴洪 《太阳能学报》 北大核心 2025年第8期430-438,共9页
为有效应对分布式光伏电站输出功率的波动对电网稳定性的挑战,提出一个新的短期光伏功率预测框架。首先,使用最优变分模态分解(OVMD)技术将原始光伏功率数据分解成多个模态分量,并将其与相关特征融合,生成一系列子序列。然后,采用结合G... 为有效应对分布式光伏电站输出功率的波动对电网稳定性的挑战,提出一个新的短期光伏功率预测框架。首先,使用最优变分模态分解(OVMD)技术将原始光伏功率数据分解成多个模态分量,并将其与相关特征融合,生成一系列子序列。然后,采用结合Gish激活函数的双向时间卷积网络(Gish-BiTCN)对每个子序列进行预测,引入多头注意力机制(MHSA)使模型更加关注和捕捉时间相关特征。最后,通过对所有子序列的预测值进行重构得到最终的预测结果。通过实验验证其在光伏发电预测方面的优越性。 展开更多
关键词 光伏功率预测 变分模态分解 双向时间卷积网络 多头自注意力机制 鲸鱼优化算法 激活函数
在线阅读 下载PDF
基于AF-BiTCN的弹道中段目标HRRP识别
8
作者 王晓丹 王鹏 +2 位作者 宋亚飞 向前 李京泰 《北京航空航天大学学报》 北大核心 2025年第2期349-359,共11页
针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为... 针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为双向序列;构建BiTCN逐层提取HRRP的双向深层时序特征,并将双向时序特征采用加性策略融合;利用更加稳健的融合特征实现对弹道中段目标的识别,并使用Adam算法优化AF-BiTCN的收敛速度和稳定性。实验结果表明:所提的基于AF-BiTCN的弹道中段目标HRRP识别方法较堆叠选择长短期记忆网络(SLSTM)、堆叠门控循环单元(SGRU)等6种时序方法具有更高的准确率和更快的识别速度,在测试集上达到了96.60%的准确率,并且在噪声数据集上表现出更好的鲁棒性。 展开更多
关键词 双向时间卷积神经网络 弹道目标识别 特征融合 高分辨距离像 滑窗算法
在线阅读 下载PDF
基于超参数优化的重质碳酸钙粉体粒度预测研究
9
作者 黄何 邹帅 +1 位作者 杨靖 黄福川 《电子测量技术》 北大核心 2025年第4期51-61,共11页
重质碳酸钙粉磨系统中,粒度是衡量产品质量的关键指标之一,准确预测粒度有助于控制产品质量并指导立磨(VRM)进行参数调节。因此,该研究提出了一种基于常春藤算法(IVYA)的双向时间卷积网络(BiTCN)和双向门控循环单元(BiGRU)相结合的重钙... 重质碳酸钙粉磨系统中,粒度是衡量产品质量的关键指标之一,准确预测粒度有助于控制产品质量并指导立磨(VRM)进行参数调节。因此,该研究提出了一种基于常春藤算法(IVYA)的双向时间卷积网络(BiTCN)和双向门控循环单元(BiGRU)相结合的重钙粉体粒度预测模型。首先对特征和标签数据进行预处理,利用时变滤波经验模态分解联合小波阈值去除分级机电流中的高频噪声;然后通过BiTCN从前后两个方向挖掘时间序列中多维特征间的关联性,在BiGRU输出端融入注意力模块赋予每一个位置不同的权重,从而有效关注序列中的的关键数据。其次,在整个模型上引入IVYA寻找神经网络中关键超参数的最优解。最后,以某碳酸钙粉磨工厂实测数据为例进行模型实验。实验表明,IVYA优化后的模型相比较于其他单一模型和组合模型具有更高的预测性能,其均方根误差、平均绝对误差、平均相对百分误差和决定系数分别为:0.8244、0.4230、1.2954%、98.95%。 展开更多
关键词 双向时间卷积网络 双向门控循环单元 超参数优化 粒度预测
在线阅读 下载PDF
融合机理模型与深度学习的加热炉钢坯温度预测
10
作者 冯旭刚 杨克 +5 位作者 安硕 王正兵 唐得志 王伟 柳传武 潘磊 《中南大学学报(自然科学版)》 北大核心 2025年第7期2719-2730,共12页
数据驱动模型在加热炉钢坯温度预测中存在机理模糊性与参数敏感性的局限,导致预测精度降低。为此,本文提出一种结合机理模型与深度学习的钢坯温度模型预测算法。首先,基于对流与辐射传热的一维非稳态传热模型(convection-radiation heat... 数据驱动模型在加热炉钢坯温度预测中存在机理模糊性与参数敏感性的局限,导致预测精度降低。为此,本文提出一种结合机理模型与深度学习的钢坯温度模型预测算法。首先,基于对流与辐射传热的一维非稳态传热模型(convection-radiation heat transfer model,CRHT),初步计算钢坯出段温度,并将其与加热炉工况参数进行融合,实现机理知识的整合;其次,采用tent混沌映射和动态自适应权重改进差异创意搜索(differentiated creative search,DCS)算法,实现双向时间卷积网络(bidirectional temporal convolutional networks,BITCN)与双向长短期记忆网络(bidirectional long short-term memory,BILSTM)融合模型的超参数协同优化;最后,通过加热炉实际生产数据,系统地验证了该模型的准确性。研究结果表明:在加热炉均热段的钢坯温度预测中,与常规BITCN-BILSTM模型的预测结果相比,所提出的预测算法所得结果的平均绝对误差、均方根误差的相对误差分别降低了52.8%和28.9%,模型预测精度得到明显提升。 展开更多
关键词 钢坯温度预测 机理模型 双向时间卷积神经网络 双向长短期记忆 差异创意搜索
在线阅读 下载PDF
基于社交媒体文本信息的金融时序预测 被引量:4
11
作者 李大舟 于沛 +1 位作者 高巍 马辉 《计算机工程与设计》 北大核心 2021年第8期2224-2231,共8页
针对传统股票趋势预测模型中忽略社交媒体文本信息对股价变化的影响和时间序列的平稳性处理、长期依赖等问题,提出一种融合社交媒体文本信息和LSTM的股票趋势预测模型(BiTCN-LSTM)。该模型分为情感分析和金融时序预测两部分。情感分析... 针对传统股票趋势预测模型中忽略社交媒体文本信息对股价变化的影响和时间序列的平稳性处理、长期依赖等问题,提出一种融合社交媒体文本信息和LSTM的股票趋势预测模型(BiTCN-LSTM)。该模型分为情感分析和金融时序预测两部分。情感分析层将社交媒体文本信息输入到双向时间卷积网络进行特征提取和情感分析,得到积极或者消极的情感分类表示;金融时序预测层使用LSTM神经网络,将差分运算后的股票历史数据和文本情感特征向量加权融合作为网络输入,完成金融时序预测任务。通过上海证券综合指数数据集的实验验证,与传统金融时序预测模型相比,该模型的RMSE指标降低3.44-43.62。 展开更多
关键词 情感分析 双向时间卷积网络 差分运算 长短时记忆 金融时间序列预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部