期刊文献+
共找到614篇文章
< 1 2 31 >
每页显示 20 50 100
基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法
1
作者 王泰然 鲍逸非 《北京大学学报(自然科学版)》 北大核心 2025年第3期487-500,共14页
提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模... 提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模拟含噪声数据集.通过深度学习网络的训练,获得性能稳定且泛化能力强的去噪模型,该模型在验证集上也表现优异.与传统去噪方法相比,所提方法的去噪效果显著提升,能够更好地保留信号的细节特征和频谱特征.将该模型应用于自贡和内江地区的实际微震观测数据,结果表明能有效地去除实测数据中的噪声. 展开更多
关键词 微小地震 噪声去除 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 深度学习
在线阅读 下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:3
2
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
在线阅读 下载PDF
融合异构图神经网络的时间卷积知识追踪方法 被引量:1
3
作者 张文奇 王海瑞 朱贵富 《小型微型计算机系统》 CSCD 北大核心 2024年第12期2823-2829,共7页
知识追踪任务旨在通过建模学生历史学习序列追踪学生认知水平,进而预测学生未来的答题表现.该文提出一个融合异构图神经网络的时间卷积知识追踪模型(Temporal Convolutional Knowledge Tracing Model with Heterogeneous Graph Neural N... 知识追踪任务旨在通过建模学生历史学习序列追踪学生认知水平,进而预测学生未来的答题表现.该文提出一个融合异构图神经网络的时间卷积知识追踪模型(Temporal Convolutional Knowledge Tracing Model with Heterogeneous Graph Neural Network,HG-TCKT),将知识追踪任务重述为基于异构图神经网络的时序边分类问题.具体来说,首先将学习记录构建成包含3种节点类型(学生,习题和技能),2种边类型(学生-习题和习题-技能)的异构图数据,异构图描述了学生交互记录中实体类型之间的丰富关系,使用异构图神经网络缓解交互稀疏的问题,引入异构互注意力机制捕捉不同类型节点间的交互关系,提取不同类型节点的高阶特征.将学生节点和习题节点表征拼接,构造边(学生-习题)的表征.最后,使用时间卷积网络捕捉学生历史交互序列的时序依赖关系从而进行预测.在2个真实教育数据集进行实验证明,HG-TCKT相比当前主流知识追踪方法有更好的预测效果. 展开更多
关键词 知识追踪 异构图神经网络 异构互注意力机制 特征拼接 时间卷积网络
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:2
4
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
在线阅读 下载PDF
基于串联深度神经网络的跨坐式单轨车辆轮胎径向载荷识别模型 被引量:1
5
作者 任利惠 周荣笙 +1 位作者 季元进 曾俊玮 《中国铁道科学》 北大核心 2025年第1期136-148,共13页
针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度... 针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度以及易直接测量的位移、转角和角速度等车辆姿态信息构建数据集,并验证动力学模型的准确性;预处理数据集时,向其中混入噪声增强数据鲁棒性,进行归一化处理便于数据计算,扩充时间步长增强数据的时序关联性;在此基础上,构建基于一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU)串联深度神经网络的轮胎径向载荷识别模型,采用Hyperband算法进行模型的超参数优化,在学习率、批量大小和优化器种类最优下通过设置合理的卷积核尺寸和门控循环单元个数规划各层数据维度,在1DCNN中引入逐点卷积和膨胀卷积以提升模型识别效果,并从准确性、鲁棒性和泛化性3个方面对模型的载荷识别效果进行评估。结果表明:与传统模型相比,基于1DCNN-BiGRU的载荷识别模型均方误差较低,低于0.106,准确性较高;数据混入信噪比低至27 dB噪声时仍具有较好的识别效果,鲁棒性较强;在不同的曲线半径、曲线超高率和惯性参数扰动工况下仍能维持较好的识别效果,泛化性较好。 展开更多
关键词 载荷识别 跨坐式单轨车辆 卷积神经网络 双向门控循环单元 超参数优化 车辆动力学模型
在线阅读 下载PDF
基于二次分解的混合神经网络蜂窝流量预测
6
作者 段阿敏 张朝辉 《系统工程与电子技术》 北大核心 2025年第5期1687-1697,共11页
在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(c... 在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法将原始流量分解为多个子序列,利用K-Shape聚类算法重构为频率序列和趋势序列。为了更细致地揭示数据的内在结构,运用变分模态分解(variational mode decomposition,VMD)方法对频率序列进行二次分解,生成多维频率序列。然后,将一维趋势序列和多维频率序列分别输入至局部特征提取模块,其中单通道特征提取层利用一维卷积神经网络(one-dimensional convolution neural network,1DCNN)提取一维趋势序列的局部特征,而多通道特征提取层则结合卷积块注意力模块(convolutional block attention module,CBAM)捕捉多维频率序列中的关键信息。紧接着将提取到的特征向量分别输入到时序信息学习模块中,利用双向长短时记忆(bidirectional long short term memory,BiLSTM)网络和注意力机制学习时序变化规律,完成预测流量的输出。最后,通过对趋势序列和频率序列的预测结果求和,实现对蜂窝流量的准确预测。为了验证所提方法的有效性,利用公开数据集进行实验验证,并与多种不同方法进行对比。实验结果表明,所提预测方法展现出更优的预测性能,为蜂窝网络的智能管理和优化提供了有力支持。 展开更多
关键词 蜂窝流量预测 模态分解 卷积神经网络 双向长短时记忆网络 卷积块注意力模块
在线阅读 下载PDF
基于SSA-BiGRU-CNN神经网络和波动数据修正的电动汽车短期负荷预测模型
7
作者 张钰声 曹敏 +1 位作者 雷宇 李龙 《电网与清洁能源》 北大核心 2025年第2期67-74,共8页
为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network... 为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network,CNN)的电动汽车短期负荷预测模型。构建BiGRU-CNN模型,并应用麻雀搜索算法(sparrowsearch algorithm,SSA)对BiGRU神经网络参数进行优化;利用BiGRU神经网络充分学习历史负荷数据的前、后向联系,采用CNN对历史负荷数据进行局部优化,并通过全连接层进行预测;考虑到天气数据内部规律性不强,采用BiGRU-CNN神经网络对天气数据所带来的负荷波动进行误差预测和修正。以陕西某区域电动汽车充电站为例,分别预测预见期为4 h和24 h的电动汽车负荷,实验结果表明,所提模型无论在工作日还是双休日都具有很高的预测精度,验证了所提方法的有效性。 展开更多
关键词 电动汽车 负荷预测 双向门控循环单元 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于自优化神经网络的船舶运动模型辨识
8
作者 张浩晢 杨智博 +2 位作者 焦绪国 吕成兴 朱齐丹 《智能系统学报》 北大核心 2025年第3期571-583,共13页
精确的船舶运动模型是船舶自主系统的核心。为提高船舶运动建模精度,引入了改进的雪融优化器(improved snow ablation optimizer,ISAO);提出一种结合双向时间卷积网络(bidirectional temporal convolutional network,Bi-TCN)与注意力机... 精确的船舶运动模型是船舶自主系统的核心。为提高船舶运动建模精度,引入了改进的雪融优化器(improved snow ablation optimizer,ISAO);提出一种结合双向时间卷积网络(bidirectional temporal convolutional network,Bi-TCN)与注意力机制(attention mechanism,AM)的网络模型,即BITCA。进一步地,将ISAO与BITCA相结合,建立ISAO-BITCA船舶运动辨识混合模型。该模型利用Bi-TCN深度挖掘船舶运动序列在双向时间及空间维度下的隐藏特征,并引入AM以减少信息损失;基于ISAO,自主搜索并优化了BITCA模型的超参数组合。仿真实验结果表明,经过ISAO优化的BITCA模型在船舶航向角、偏航角速度、横摇角和总速度预测上的均方根误差(root mean square error,RMSE)分别降低了54.1%、28.21%、5.88%和40%,为船舶运动模型的准确辨识提供了一种有效手段。 展开更多
关键词 船舶运动建模 改进雪融优化器 双向时间卷积网络 注意力机制 优化 超参数 预测 辨识
在线阅读 下载PDF
卷积神经网络方法在岛礁类海啸波水动力特性演变的应用 被引量:1
9
作者 高榕泽 屈科 +1 位作者 任兴月 王旭 《热带海洋学报》 CAS CSCD 北大核心 2024年第4期68-75,共8页
海啸是严重的海洋灾害,准确的海啸预测对于海洋工程和人民生命财产安全具有重要意义。本文以一维卷积神经网络(1-dimensional convolutional neural network,CONV1D)为基础,构建岛礁地形的类海啸波水动力特性演变模型。通过输入类海啸... 海啸是严重的海洋灾害,准确的海啸预测对于海洋工程和人民生命财产安全具有重要意义。本文以一维卷积神经网络(1-dimensional convolutional neural network,CONV1D)为基础,构建岛礁地形的类海啸波水动力特性演变模型。通过输入类海啸波波高时程曲线的观测值,得到岛礁指定地点的水位淹没时程曲线,实现时间序列到时间序列的预测,进行海洋灾害的实时预报,提前布置防御措施以达到减小损失的目的。结果显示,预测一组样本所需时间少于一秒,相对于传统的地震海啸预警系统,深度学习方法所需计算资源较少,计算速度更快。对类海啸波到达时间预测的平均相对误差为0.71%,最大水位高度预测的平均相对误差为6.99%, CONV1D得到的岛礁地形类海啸波水动力特性与数值结果吻合较好。 展开更多
关键词 深度学习 卷积神经网络 海啸预测 水动力特性 时间序列
在线阅读 下载PDF
卷积神经网络在近岸表层海温预报中的应用 被引量:4
10
作者 翁少佳 蔡锦海 +1 位作者 庞运禧 罗荣真 《热带海洋学报》 CAS CSCD 北大核心 2024年第1期40-47,共8页
针对数值预报和人工经验预报在近岸定点表层海温(sea surface temperature,SST)预报中预报准确度不高,将近岸台站定点SST预报转换为多元时间序列预测任务,应用卷积神经网络(convolutional neural networks,CNN)构建近岸台站定点SST时间... 针对数值预报和人工经验预报在近岸定点表层海温(sea surface temperature,SST)预报中预报准确度不高,将近岸台站定点SST预报转换为多元时间序列预测任务,应用卷积神经网络(convolutional neural networks,CNN)构建近岸台站定点SST时间序列变化模型,对近岸台站每日最高海温、最低海温、平均海温进行预报,并与人工经验方法和长短期记忆网络(long short-termmemory,LSTM)方法进行对比试验。结果显示,在测试数据中相比人工经验预报,CNN方法全年日最高海温预报平均绝对误差(mean absolute error,MAE)为0.36℃,平均下降0.14℃,均方根误差(root mean squared error,RMSE)为0.49℃,平均下降0.21℃,日最低海温预报MAE为0.36℃,平均下降0.17℃,RMSE为0.63℃,平均下降0.24℃,日平均海温预报MAE为0.30℃,RMSE为0.47℃,预报性能和LSTM模型预报性能相当。研究表明CNN应用于近岸SST预报具有可行性,能够有效地提高SST预报准确度,并且预报效果可以媲美LSTM。 展开更多
关键词 表层海温 近岸台站 多元时间序列 卷积神经网络
在线阅读 下载PDF
应用卷积神经网络模型的超声特征信号提取算法
11
作者 樊丹丹 孔明 +2 位作者 马馨玥 崔志文 徐佳奇 《中国测试》 CAS 北大核心 2024年第12期117-124,共8页
飞行时间差是时差法超声波流量计的关键参数,决定表具的计量精度。该文采用卷积神经网络对超声回波信号进行特征提取,提取的特征用来回归预测飞行时间差。超声回波信号作为模型的输入层,中间层为提高模型性能,加速训练,使用五层卷积层... 飞行时间差是时差法超声波流量计的关键参数,决定表具的计量精度。该文采用卷积神经网络对超声回波信号进行特征提取,提取的特征用来回归预测飞行时间差。超声回波信号作为模型的输入层,中间层为提高模型性能,加速训练,使用五层卷积层、五层池化层及RELU激活函数提取信号特征,输出层回归预测飞行时间差,提高对时间差估计的精度。仿真研究表明,模型预测的准确率高于99%,且有较好的泛化能力。搭建实验平台,进行实验研究,结果表明,卷积神经网络模型用于预测超声回波信号飞行时间差有着较高的测量准确性,其中测量误差优于±1%,重复性优于0.2%。 展开更多
关键词 超声波气体流量计 飞行时间差检测 卷积神经网络模型 回波信号处理
在线阅读 下载PDF
基于时间序列单维卷积神经网络的水泥熟料游离钙软测量方法 被引量:6
12
作者 赵彦涛 何永强 +2 位作者 贾利颖 杨黎明 郝晓辰 《计量学报》 CSCD 北大核心 2020年第9期1152-1162,共11页
水泥熟料游离钙(fCaO)含量对水泥质量和生产能耗有着重要影响,现阶段主要通过化学分析的方法离线测得水泥熟料fCaO含量,但是该方法对于烧成系统操作指导具有明显的滞后性。针对熟料fCaO无法在线实时监测的问题,提出基于多变量时间序列... 水泥熟料游离钙(fCaO)含量对水泥质量和生产能耗有着重要影响,现阶段主要通过化学分析的方法离线测得水泥熟料fCaO含量,但是该方法对于烧成系统操作指导具有明显的滞后性。针对熟料fCaO无法在线实时监测的问题,提出基于多变量时间序列单维卷积神经网络(TS-CNN)熟料fCaO软测量建模方法。该方法利用影响熟料fCaO的多个过程变量历史时间段的时间序列作为输入,结合水泥数据特性,采用单维卷积池化的方式提取各过程变量特征,同时降低网络的复杂度,最后经全连接层整合提取的局部信息。通过实验对比,结果表明基于TS-CNN的软测量方法预测精度更高、泛化能力更强。 展开更多
关键词 计量学 水泥熟料游离钙 单维卷积神经网络 时间序列 软测量模型
在线阅读 下载PDF
基于金豺优化变分模态分解与时间卷积网络的过热汽温特性建模
13
作者 金秀章 赵术善 +2 位作者 畅晗 赵大勇 仲轩正 《中国电机工程学报》 北大核心 2025年第12期4759-4767,I0019,共10页
针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal opti... 针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal optimization,GJO)优化变分模态分解(variational mode decomposition,VMD)算法与GJO优化时间卷积神经网络(temporal convolutional network,TCN)的过热汽温系统特性模型。使用互信息(mutual information,MI)将机理分析得到的13个过热汽温特征变量进行排序并去除冗余变量;对筛选后的7个特征变量使用GJO-VMD算法进行分解,选择相关性较大的本征模态函数(intrinsic mode function,IMF)分量进行重构作为最终模型输入;最后,使用GJO-TCN建立过热汽温特性模型,并使用某660 MW燃煤电厂历史运行数据进行仿真实验。实验结果表明,基于GJO-VMD与GJO-TCN的过热汽温特性模型相较于TCN、长短期记忆网络(long short-term memory,LSTM)、GJO-LSTM,具有更高的预测精度。 展开更多
关键词 过热汽温 金豺算法 变分模态分解 时间卷积神经网络
在线阅读 下载PDF
基于变分模态分解的卷积神经网络−双向门控循环单元−多元线性回归多频组合短期电力负荷预测 被引量:19
14
作者 方娜 李俊晓 +1 位作者 陈浩 李新新 《现代电力》 北大核心 2022年第4期441-448,共8页
为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple line... 为了有效提高电力负荷预测精度,针对电力负荷非线性、非平稳性、时序性的特点,提出了一种卷积神经网络(convolutional neural networks,CNN)、双向门控循环单元(bidirectional gated recurrent unit,BiGRU)和多元线性回归(multiple linear regression,MLR)混合的多频组合短期电力负荷预测模型。该模型先利用关联度分析得到相似日,并将其负荷组成新的数据序列,同时使用变分模态分解(variational mode decomposition,VMD)将该数据序列进行分解,并重构成高低2种频率。对于高频分量,使用CNN-BiGRU模型进行预测;低频部分则使用MLR。最后将各个模型得出的预测结果叠加,得到最终预测结果。以2006年澳大利亚真实数据为例,进行短期电力负荷预测。仿真结果表明,相比于其他网络模型,该模型具有较高的预测精度和拟合能力,是一种有效的短期负荷预测方法。 展开更多
关键词 变分模态分解 卷积神经网络 双向门控循环单元 多元线性回归 负荷预测
在线阅读 下载PDF
融合卷积神经网络与双向GRU的文本情感分析胶囊模型 被引量:11
15
作者 程艳 孙欢 +3 位作者 陈豪迈 李猛 蔡盈盈 蔡壮 《中文信息学报》 CSCD 北大核心 2021年第5期118-129,共12页
文本情感分析是自然语言处理领域一个重要的分支。现有深度学习方法不能更为全面地提取文本情感特征,且严重依赖于大量的语言知识和情感资源,需要将这些特有的情感信息充分利用使模型达到最佳性能。该文提出了一种融合卷积神经网络与双... 文本情感分析是自然语言处理领域一个重要的分支。现有深度学习方法不能更为全面地提取文本情感特征,且严重依赖于大量的语言知识和情感资源,需要将这些特有的情感信息充分利用使模型达到最佳性能。该文提出了一种融合卷积神经网络与双向GRU网络的文本情感分析胶囊模型。该模型首先使用多头注意力学习单词间的依赖关系、捕获文本中情感词,利用卷积神经网络和双向GRU提取文本不同粒度的情感特征,特征融合后输入全局平均池化层,在得到文本的实例特征表示的同时,针对每个情感类别结合注意力机制生成特征向量构建情感胶囊,最后根据胶囊属性判断文本情感类别。模型在MR、IMDB、SST-5及谭松波酒店评论数据集上进行实验,相比于其他基线模型具有更好的分类效果。 展开更多
关键词 文本情感分析 多头注意力 卷积神经网络 双向门控循环网络 情感胶囊
在线阅读 下载PDF
基于深度时间卷积神经网络与迁移学习的流程制造工艺过程质量时序关联预测 被引量:2
16
作者 阴艳超 施成娟 +1 位作者 邹朝普 刘孝保 《中国机械工程》 EI CAS CSCD 北大核心 2023年第14期1659-1671,共13页
针对流程生产多工艺参数时序耦合导致的生产质量难以准确预测的问题,提出了基于深度时间卷积神经网络与迁移学习的生产质量快速高效预测方法。借助序列到序列的学习框架,采用深度时间卷积神经网络和时序注意力机制构成的编码器提取多源... 针对流程生产多工艺参数时序耦合导致的生产质量难以准确预测的问题,提出了基于深度时间卷积神经网络与迁移学习的生产质量快速高效预测方法。借助序列到序列的学习框架,采用深度时间卷积神经网络和时序注意力机制构成的编码器提取多源关键时序特征,采用残差长短期记忆神经网络构成的解码器挖掘质量时序信息,引入迁移学习解决预测模型对生产质量在线预测适应性的问题。实验表明所提方法的预测精度与稳定性优势显著,且在小样本数据预测时具有较高的预测精度和计算效率。 展开更多
关键词 工艺过程质量 时序关联预测 序列到序列 时间卷积神经网络 迁移学习
在线阅读 下载PDF
长白山红松阔叶林的净碳交换变化及基于时间卷积神经网络的模拟 被引量:6
17
作者 齐建东 谭新新 《林业科学》 EI CAS CSCD 北大核心 2022年第2期1-12,共12页
【目的】分析长白山红松阔叶林净生态系统碳交换量(NEE)的季节性差异及其气象因子响应,在月尺度下揭示气象因子对NEE的动态影响,为调节研究地区的碳收支提供理论指导。同时研究时间卷积神经网络在森林生态系统净碳交换模拟中的应用,探索... 【目的】分析长白山红松阔叶林净生态系统碳交换量(NEE)的季节性差异及其气象因子响应,在月尺度下揭示气象因子对NEE的动态影响,为调节研究地区的碳收支提供理论指导。同时研究时间卷积神经网络在森林生态系统净碳交换模拟中的应用,探索NEE模拟的新方法。【方法】基于长白山温带红松阔叶林通量观测站2007—2010年间的30 min观测数据,分析NEE和输入模型的5种气象因子的季节性差异,并分析5种气象因子与NEE的相关性。使用随机森林模型,计算影响NEE的各因子重要性得分,选择得分较高的5种气象因子:潜热通量、显热通量、冠层上方空气湿度、冠层上方水汽压和净辐射作为NEE模拟的输入;分别构建基于时间卷积神经网络(TCN)、长短期记忆网络(LSTM)、人工神经网络(ANN)、支持向量回归(SVR)和极限学习机(ELM)的5种NEE模型,采用决定系数(R^(2))、平均绝对误差(MAE)和均方根误差(RMSE)评价模型的预测精度和稳定性。【结果】长白山温带红松阔叶林通量观测站NEE全年总量为-74.7773 gCO_(2)·m^(-2)a-1,总体表现为碳汇,但夏季表现为碳汇,冬季表现为碳源;NEE与潜热通量、冠层上方水汽压、净辐射和冠层上方空气湿度均极显著负相关(P<0.0001),和显热通量相关性不显著;TCN模型的RMSE为0.1105 mgCO_(2)·m^(-2)s^(-1),R^(2)为0.8214,RMSE分别比ELM、SVR、ANN和LSTM减少0.0248、0.0224、0.0222和0.0068 mgCO_(2)·m^(-2)s^(-1),R^(2)分别比ELM、SVR、ANN和LSTM增加0.0806、0.0777、0.0686、0.0223;根据5种模型的10次试验结果,计算得到TCN模型RMSE的标准差为0.0004 mgCO_(2)·m^(-2)s^(-1),相比ELM、ANN和LSTM分别减小0.0014、0.0013和0.0002 mgCO_(2)·m^(-2)s^(-1)。【结论】长白山温带红松阔叶林通量观测站的NEE总体表现为碳汇,但存在明显的季节差异;NEE与潜热通量、冠层上方水汽压、冠层上方空气湿度、净辐射极显著负相关(P<0.0001),与显热通量相关性不显著。对于长白山温带红松阔叶林通量观测站的长期NEE预测结果表明,基于TCN的模型不仅预测精度良好,并且具有较强的稳定性,能为时间卷积神经网络在生态模拟领域的应用提供可行性依据。本研究结果可为调节长白山红松阔叶林的碳收支提供理论指导。 展开更多
关键词 时间卷积神经网络 NEE 长白山红松阔叶林
在线阅读 下载PDF
基于卷积神经网络的时间序列数据融合算法 被引量:14
18
作者 孙淑娥 姚柳 赵怡 《西安石油大学学报(自然科学版)》 北大核心 2021年第5期136-142,共7页
通常的数据融合算法都是对传感器数据在同一时间不同空间的特征进行融合。其中,深度卷积神经网络(DCNN)融合性能突出,通过多个卷积层、池化层、全连接层实现特征提取、信息关联、决策判断一体化。在DCNN的基础上,提出基于卷积神经网络... 通常的数据融合算法都是对传感器数据在同一时间不同空间的特征进行融合。其中,深度卷积神经网络(DCNN)融合性能突出,通过多个卷积层、池化层、全连接层实现特征提取、信息关联、决策判断一体化。在DCNN的基础上,提出基于卷积神经网络的数据融合算法(DAECNN_attention),引入降噪自编码器,用以实现数据去噪重建;引入自注意力机制模型,用以提高关键信息的提取能力。试验结果表明,与DCNN、BPNN数据融合算法相比,本文算法在UCI数据集上融合性能更优。 展开更多
关键词 时间序列数据 数据融合 特征提取 一维卷积神经网络
在线阅读 下载PDF
基于双向时间卷积网络的半监督日志异常检测 被引量:2
19
作者 尹春勇 孔娴 《计算机应用研究》 CSCD 北大核心 2024年第7期2110-2117,共8页
由于日志解析准确率不高以及标记样本不足降低了异常检测的准确率,所以提出了一种新的基于日志的半监督异常检测方法。首先,通过改进字典的日志解析方法,保留了日志事件中的部分参数信息,从而提高日志信息的利用率和日志解析的准确率;然... 由于日志解析准确率不高以及标记样本不足降低了异常检测的准确率,所以提出了一种新的基于日志的半监督异常检测方法。首先,通过改进字典的日志解析方法,保留了日志事件中的部分参数信息,从而提高日志信息的利用率和日志解析的准确率;然后,使用BERT对模板中的语义信息进行编码,获得日志的语义向量;接着采用聚类的方法进行标签估计,缓解了数据标注不足的问题,有效提高了模型对不稳定数据的检测;最后,使用带有残差块的双向时间卷积网络(Bi-TCN)从两个方向捕获上下文信息,提高了异常检测的精度和效率。为了评估该方法的性能,在两个数据集上进行了评估,最终实验结果表明,该方法与最新的三个基准模型LogBERT、PLELog和LogEncoder相比,F 1值平均提高了7%、14.1%和8.04%,能够高效精准地进行日志解析和日志异常检测。 展开更多
关键词 日志解析 异常检测 半监督学习 双向时间卷积网络 上下文相关性
在线阅读 下载PDF
基于多层卷积神经网络特征和双向长短时记忆单元的行为识别(英文) 被引量:12
20
作者 葛瑞 王朝晖 +3 位作者 徐鑫 季怡 刘纯平 龚声蓉 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第6期790-796,共7页
鲁棒的视频行为识别由于其复杂性成为了一项极具挑战的任务.如何有效提取鲁棒的时空特征成为解决问题的关键.在本文中,提出使用双向长短时记忆单元(Bi-LSTM)作为主要框架去捕获视频序列的双向时空特征.首先,为了增强特征表达,使用多层... 鲁棒的视频行为识别由于其复杂性成为了一项极具挑战的任务.如何有效提取鲁棒的时空特征成为解决问题的关键.在本文中,提出使用双向长短时记忆单元(Bi-LSTM)作为主要框架去捕获视频序列的双向时空特征.首先,为了增强特征表达,使用多层的卷积神经网络特征代替传统的手工特征.多层卷积特征融合了低层形状信息和高层语义信息,能够捕获丰富的空间信息.然后,将提取到的卷积特征输入Bi-LSTM,Bi-LSTM包含两个不同方向的LSTM层.前向层从前向后捕获视频演变,后向层反方向建模视频演变.最后两个方向的演变表达融合到Softmax中,得到最后的分类结果.在UCF101和HMDB51数据集上的实验结果显示本文的方法在行为识别上可以取得较好的性能. 展开更多
关键词 行为识别 卷积神经网络 递归神经网络 双向递归神经网络
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部