期刊文献+
共找到644篇文章
< 1 2 33 >
每页显示 20 50 100
融合数字孪生体超声波时间反演及卷积神经网络的变压器局放定位
1
作者 孙卫 徐天乐 +3 位作者 郗发刚 郑智燊 付吉烨 方子朝 《应用声学》 北大核心 2025年第6期1450-1462,共13页
基于超高频信号或超声波信号的时间反演法近年来在变压器局放定位中获得了研究关注。针对超声波反演信号反向传播仿真计算和聚焦点确定耗时长、不适合在线应用的问题,在时间反演时空聚焦定位理论基础上提出了基于变压器数字孪生体以及... 基于超高频信号或超声波信号的时间反演法近年来在变压器局放定位中获得了研究关注。针对超声波反演信号反向传播仿真计算和聚焦点确定耗时长、不适合在线应用的问题,在时间反演时空聚焦定位理论基础上提出了基于变压器数字孪生体以及卷积神经网络(CNN)学习建模的变压器局放定位方法。采用多物理场仿真软件建立了变压器声波传播仿真模型,在变压器孪生体多个位置引入局放声波激励并进行正向传播仿真计算,并对传感信号进行预处理获得大量样本用于学习建模。针对单传感器和三传感器方案分别研究了局放定位CNN框架,测试结果表明,增加传感器数量可增强聚焦信号质量,提升局放定位性能,使三传感器局放定位的单方向均方根误差仅为18 mm。通过与支持向量回归、XGBoost、BP神经网络的横向对比表明,CNN的深度学习机制对声波特征的提取能力更强,适合用于变压器局放定位。 展开更多
关键词 变压器 局放定位 数字孪生 时间反演 卷积神经网络
在线阅读 下载PDF
基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法
2
作者 王泰然 鲍逸非 《北京大学学报(自然科学版)》 北大核心 2025年第3期487-500,共14页
提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模... 提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模拟含噪声数据集.通过深度学习网络的训练,获得性能稳定且泛化能力强的去噪模型,该模型在验证集上也表现优异.与传统去噪方法相比,所提方法的去噪效果显著提升,能够更好地保留信号的细节特征和频谱特征.将该模型应用于自贡和内江地区的实际微震观测数据,结果表明能有效地去除实测数据中的噪声. 展开更多
关键词 微小地震 噪声去除 卷积神经网络(CNN) 双向长短期记忆网络(BiLSTM) 深度学习
在线阅读 下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:3
3
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
在线阅读 下载PDF
神经网络辅助决策的时间反转雷电甚高频辐射源定位
4
作者 杜双江 李云 +2 位作者 邱实 罗小军 石立华 《地球物理学报》 北大核心 2025年第9期3367-3385,共19页
辐射源定位结果的有效性判定能够排除噪声定位结果干扰,保留真实有效的辐射源定位点,进而获取一个清晰连续的闪电成像图.基于电磁时间反转(electromagnetic time reversal,EMTR)的雷电甚高频辐射源定位方法具有较高的定位精度,但其定位... 辐射源定位结果的有效性判定能够排除噪声定位结果干扰,保留真实有效的辐射源定位点,进而获取一个清晰连续的闪电成像图.基于电磁时间反转(electromagnetic time reversal,EMTR)的雷电甚高频辐射源定位方法具有较高的定位精度,但其定位结果有效性判定方法依靠主观设定的阈值,无法准确区分弱辐射源和噪声定位结果;其次,该方法定位速度较慢,时效性较差.为了改善这些问题,本文提出了一种基于神经网络辅助决策的定位方法,构建了一个双通道二维卷积神经网络分类模型.首先对滑动窗口的时域信号进行离散傅里叶变换,将其频点幅值及相位信息输入模型进行分类预测,判断其是否为辐射源;而后仅保留辐射源滑窗数据进行定位计算,减少了滑窗运算量;最后通过密度聚类算法对定位结果进行筛选并得到最终定位结果.模型在实测的人工引雷数据上的分类精度达到了99.73%.使用梯度可视化热力图对模型所学习到的特征以及分类依据进行物理涵义分析,增强了模型的可解释性以及合理性.相较于现有的EMTR方法,本文提出的方法不仅定位速度提高了21倍,同时模型具有较好的迁移泛化能力,对于未曾学习过的人工触发闪电以及自然闪电数据均具有较好的识别能力,在这些数据上的辐射源定位数量增加了55.71%,在排除噪声干扰的同时,获得了更为精细的通道结构图,并保留了更多的雷电发展分支结构. 展开更多
关键词 雷电定位 电磁时间反转 卷积神经网络 辐射源判别 可解释分析
在线阅读 下载PDF
融合异构图神经网络的时间卷积知识追踪方法 被引量:1
5
作者 张文奇 王海瑞 朱贵富 《小型微型计算机系统》 CSCD 北大核心 2024年第12期2823-2829,共7页
知识追踪任务旨在通过建模学生历史学习序列追踪学生认知水平,进而预测学生未来的答题表现.该文提出一个融合异构图神经网络的时间卷积知识追踪模型(Temporal Convolutional Knowledge Tracing Model with Heterogeneous Graph Neural N... 知识追踪任务旨在通过建模学生历史学习序列追踪学生认知水平,进而预测学生未来的答题表现.该文提出一个融合异构图神经网络的时间卷积知识追踪模型(Temporal Convolutional Knowledge Tracing Model with Heterogeneous Graph Neural Network,HG-TCKT),将知识追踪任务重述为基于异构图神经网络的时序边分类问题.具体来说,首先将学习记录构建成包含3种节点类型(学生,习题和技能),2种边类型(学生-习题和习题-技能)的异构图数据,异构图描述了学生交互记录中实体类型之间的丰富关系,使用异构图神经网络缓解交互稀疏的问题,引入异构互注意力机制捕捉不同类型节点间的交互关系,提取不同类型节点的高阶特征.将学生节点和习题节点表征拼接,构造边(学生-习题)的表征.最后,使用时间卷积网络捕捉学生历史交互序列的时序依赖关系从而进行预测.在2个真实教育数据集进行实验证明,HG-TCKT相比当前主流知识追踪方法有更好的预测效果. 展开更多
关键词 知识追踪 异构图神经网络 异构互注意力机制 特征拼接 时间卷积网络
在线阅读 下载PDF
基于VMD复合神经网络模型的手势动作预测
6
作者 赵炼 吴扬东 +3 位作者 邓智方 李丰硕 袁庆霓 张太华 《计算机科学》 北大核心 2025年第11期166-174,共9页
表面肌电信号(Surface Electromyography,sEMG)常用于预测人体意图行为,是一种不平稳、非周期、含有噪声的生物电信号,容易受工频干扰、环境干扰等影响,导致对其进行预测存在一定难度。对此,提出了一种基于变分模态分解(Variatio-nal Mo... 表面肌电信号(Surface Electromyography,sEMG)常用于预测人体意图行为,是一种不平稳、非周期、含有噪声的生物电信号,容易受工频干扰、环境干扰等影响,导致对其进行预测存在一定难度。对此,提出了一种基于变分模态分解(Variatio-nal Mode Decomposition,VMD)和改进粒子群优化(Particle Swarm Optimization,PSO)算法的复合神经网络模型(Composite Neural Network Model,CNNM)。该模型结合了长短期记忆网络(Long-Short Term Memory,LSTM)、卷积神经网络(Convolutional Neural Networks,CNN)和双向长短期记忆网络(Bidirectional Long Short Term Memory,BiLSTM)。首先对PSO算法进行改进以优化VMD的参数,通过VMD处理sEMG信号,提出希尔伯特能量法,对分解后的分量进行加权重构,降低信号复杂性并保留关键特征。然后利用LSTM方法从sEMG信号中提取时间特征,利用CNN方法进一步提取空间特征,并通过注意力机制强化对关键信息的提取,最后输入BiLSTM中进行预测识别。实验结果表明,该模型的预测准确率可达99.9%,相较于其他模型提高了3%~8%,并通过消融实验验证了各模块的作用。该研究旨在提高手势动作的预测识别精度,为康复训练机器人的控制提供有效的解决方案。 展开更多
关键词 表面肌电信号 变分模态分解 卷积神经网络 长短期记忆网络 双向长短期记忆网络
在线阅读 下载PDF
儿童异常肺音识别的时序优化神经网络模型
7
作者 张龙基 魏云龙 +2 位作者 郑晓明 俞英健 熊丽君 《声学技术》 北大核心 2025年第5期730-737,共8页
异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网... 异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网络(convolutional neural network,CNN)与双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)的混合模型,用于儿童异常肺音的分类方法。该方法通过CNN对MFCC特征进行空间特性提取,利用BiLSTM对MFCC音频特征进行时序特性提取,建立了BCNnet(BILSTM CNN network)模型。文章收集并建立了一个儿童肺音数据集,在该数据集上,所提方法平均准确率可达75.3%,与以声谱图为输入的CNN(并行池化)模型相比,准确率提高了3.7个百分点,且在模型大小和识别速度上均有改善。 展开更多
关键词 异常肺音 MFCC特征 卷积神经网络 双向长短时记忆网络 BCNnet模型
在线阅读 下载PDF
基于神经网络和稳健估计的风电机组状态监测
8
作者 岳子桐 李艳婷 赵宇 《中国机械工程》 北大核心 2025年第8期1842-1852,共11页
在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度... 在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度慢的问题,采用卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的网络结构,并引入一种新颖的优化算法——长鼻浣熊优化算法(COA),以改善温度预测模型的训练效果。此外,考虑到实际操作环境中传统控制图存在较高的假警报率这一问题,提出了一种结合中位数估计(MED)与最小正则化加权协方差行列式估计(MRWCD)的策略,用于残差向量的稳健性监测。基于上述改进,建立了一个多元指数加权移动平均控制图。在华东地区某一风电场的应用案例表明,相较于传统的监测手段,所提方法能够显著减少误报的情况,并且在风电机组的状态监测过程中,可靠性与稳定性更高。 展开更多
关键词 风电机组状态监测 卷积神经网络-双向门控循环单元 长鼻浣熊优化算法 稳健检验统计量
在线阅读 下载PDF
基于多元气象信息和改进组合神经网络的分布式光伏短期功率预测模型
9
作者 吴伟丽 米婵 李磊 《太阳能学报》 北大核心 2025年第11期181-192,共12页
为提高光伏发电功率预测的准确性,提出一种考虑邻近电站气象信息的多元气象特征和改进组合神经网络的光伏功率短期预测模型。首先,考虑相邻分布光伏电站之间的地理因素和气候条件的相关性,利用灰色关联法确定待预测电站的主要影响因素,... 为提高光伏发电功率预测的准确性,提出一种考虑邻近电站气象信息的多元气象特征和改进组合神经网络的光伏功率短期预测模型。首先,考虑相邻分布光伏电站之间的地理因素和气候条件的相关性,利用灰色关联法确定待预测电站的主要影响因素,构成多元气象信息关键特征作为预测模型的输入序列。其次,结合时间卷积网络(TCN)对输入序列信息有效提取和双向门控循环单元(BiGRU)对数据双向学习的优势,搭建TCN-BiGRU组合预测模型,并采用改进后的灰狼优化算法(IGWO)对BiGRU进行超参数寻优,实现光伏发电功率的高精度预测。最后,利用实测数据对所提模型加以验证,并与同类方法进行对比。结果表明与多元气象信息结合,预测模型能够有效提高一年四季中不同类型天气的发电功率预测精度;与其他预测模型相比较,即使在气候条件剧烈变化或随机变化时,所提方法的预测结果也能呈现出良好的预测精度。 展开更多
关键词 光伏功率预测 神经网络 变分模态分解 双向门控循环单元 时间卷积网络 改进灰狼优化算法
在线阅读 下载PDF
基于SSA-BiGRU-CNN神经网络和波动数据修正的电动汽车短期负荷预测模型 被引量:1
10
作者 张钰声 曹敏 +1 位作者 雷宇 李龙 《电网与清洁能源》 北大核心 2025年第2期67-74,共8页
为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network... 为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network,CNN)的电动汽车短期负荷预测模型。构建BiGRU-CNN模型,并应用麻雀搜索算法(sparrowsearch algorithm,SSA)对BiGRU神经网络参数进行优化;利用BiGRU神经网络充分学习历史负荷数据的前、后向联系,采用CNN对历史负荷数据进行局部优化,并通过全连接层进行预测;考虑到天气数据内部规律性不强,采用BiGRU-CNN神经网络对天气数据所带来的负荷波动进行误差预测和修正。以陕西某区域电动汽车充电站为例,分别预测预见期为4 h和24 h的电动汽车负荷,实验结果表明,所提模型无论在工作日还是双休日都具有很高的预测精度,验证了所提方法的有效性。 展开更多
关键词 电动汽车 负荷预测 双向门控循环单元 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:2
11
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
在线阅读 下载PDF
基于串联深度神经网络的跨坐式单轨车辆轮胎径向载荷识别模型 被引量:1
12
作者 任利惠 周荣笙 +1 位作者 季元进 曾俊玮 《中国铁道科学》 北大核心 2025年第1期136-148,共13页
针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度... 针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度以及易直接测量的位移、转角和角速度等车辆姿态信息构建数据集,并验证动力学模型的准确性;预处理数据集时,向其中混入噪声增强数据鲁棒性,进行归一化处理便于数据计算,扩充时间步长增强数据的时序关联性;在此基础上,构建基于一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU)串联深度神经网络的轮胎径向载荷识别模型,采用Hyperband算法进行模型的超参数优化,在学习率、批量大小和优化器种类最优下通过设置合理的卷积核尺寸和门控循环单元个数规划各层数据维度,在1DCNN中引入逐点卷积和膨胀卷积以提升模型识别效果,并从准确性、鲁棒性和泛化性3个方面对模型的载荷识别效果进行评估。结果表明:与传统模型相比,基于1DCNN-BiGRU的载荷识别模型均方误差较低,低于0.106,准确性较高;数据混入信噪比低至27 dB噪声时仍具有较好的识别效果,鲁棒性较强;在不同的曲线半径、曲线超高率和惯性参数扰动工况下仍能维持较好的识别效果,泛化性较好。 展开更多
关键词 载荷识别 跨坐式单轨车辆 卷积神经网络 双向门控循环单元 超参数优化 车辆动力学模型
在线阅读 下载PDF
基于二次分解的混合神经网络蜂窝流量预测
13
作者 段阿敏 张朝辉 《系统工程与电子技术》 北大核心 2025年第5期1687-1697,共11页
在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(c... 在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法将原始流量分解为多个子序列,利用K-Shape聚类算法重构为频率序列和趋势序列。为了更细致地揭示数据的内在结构,运用变分模态分解(variational mode decomposition,VMD)方法对频率序列进行二次分解,生成多维频率序列。然后,将一维趋势序列和多维频率序列分别输入至局部特征提取模块,其中单通道特征提取层利用一维卷积神经网络(one-dimensional convolution neural network,1DCNN)提取一维趋势序列的局部特征,而多通道特征提取层则结合卷积块注意力模块(convolutional block attention module,CBAM)捕捉多维频率序列中的关键信息。紧接着将提取到的特征向量分别输入到时序信息学习模块中,利用双向长短时记忆(bidirectional long short term memory,BiLSTM)网络和注意力机制学习时序变化规律,完成预测流量的输出。最后,通过对趋势序列和频率序列的预测结果求和,实现对蜂窝流量的准确预测。为了验证所提方法的有效性,利用公开数据集进行实验验证,并与多种不同方法进行对比。实验结果表明,所提预测方法展现出更优的预测性能,为蜂窝网络的智能管理和优化提供了有力支持。 展开更多
关键词 蜂窝流量预测 模态分解 卷积神经网络 双向长短时记忆网络 卷积块注意力模块
在线阅读 下载PDF
基于自优化神经网络的船舶运动模型辨识
14
作者 张浩晢 杨智博 +2 位作者 焦绪国 吕成兴 朱齐丹 《智能系统学报》 北大核心 2025年第3期571-583,共13页
精确的船舶运动模型是船舶自主系统的核心。为提高船舶运动建模精度,引入了改进的雪融优化器(improved snow ablation optimizer,ISAO);提出一种结合双向时间卷积网络(bidirectional temporal convolutional network,Bi-TCN)与注意力机... 精确的船舶运动模型是船舶自主系统的核心。为提高船舶运动建模精度,引入了改进的雪融优化器(improved snow ablation optimizer,ISAO);提出一种结合双向时间卷积网络(bidirectional temporal convolutional network,Bi-TCN)与注意力机制(attention mechanism,AM)的网络模型,即BITCA。进一步地,将ISAO与BITCA相结合,建立ISAO-BITCA船舶运动辨识混合模型。该模型利用Bi-TCN深度挖掘船舶运动序列在双向时间及空间维度下的隐藏特征,并引入AM以减少信息损失;基于ISAO,自主搜索并优化了BITCA模型的超参数组合。仿真实验结果表明,经过ISAO优化的BITCA模型在船舶航向角、偏航角速度、横摇角和总速度预测上的均方根误差(root mean square error,RMSE)分别降低了54.1%、28.21%、5.88%和40%,为船舶运动模型的准确辨识提供了一种有效手段。 展开更多
关键词 船舶运动建模 改进雪融优化器 双向时间卷积网络 注意力机制 优化 超参数 预测 辨识
在线阅读 下载PDF
卷积神经网络方法在岛礁类海啸波水动力特性演变的应用 被引量:1
15
作者 高榕泽 屈科 +1 位作者 任兴月 王旭 《热带海洋学报》 CAS CSCD 北大核心 2024年第4期68-75,共8页
海啸是严重的海洋灾害,准确的海啸预测对于海洋工程和人民生命财产安全具有重要意义。本文以一维卷积神经网络(1-dimensional convolutional neural network,CONV1D)为基础,构建岛礁地形的类海啸波水动力特性演变模型。通过输入类海啸... 海啸是严重的海洋灾害,准确的海啸预测对于海洋工程和人民生命财产安全具有重要意义。本文以一维卷积神经网络(1-dimensional convolutional neural network,CONV1D)为基础,构建岛礁地形的类海啸波水动力特性演变模型。通过输入类海啸波波高时程曲线的观测值,得到岛礁指定地点的水位淹没时程曲线,实现时间序列到时间序列的预测,进行海洋灾害的实时预报,提前布置防御措施以达到减小损失的目的。结果显示,预测一组样本所需时间少于一秒,相对于传统的地震海啸预警系统,深度学习方法所需计算资源较少,计算速度更快。对类海啸波到达时间预测的平均相对误差为0.71%,最大水位高度预测的平均相对误差为6.99%, CONV1D得到的岛礁地形类海啸波水动力特性与数值结果吻合较好。 展开更多
关键词 深度学习 卷积神经网络 海啸预测 水动力特性 时间序列
在线阅读 下载PDF
应用卷积神经网络模型的超声特征信号提取算法 被引量:2
16
作者 樊丹丹 孔明 +2 位作者 马馨玥 崔志文 徐佳奇 《中国测试》 CAS 北大核心 2024年第12期117-124,共8页
飞行时间差是时差法超声波流量计的关键参数,决定表具的计量精度。该文采用卷积神经网络对超声回波信号进行特征提取,提取的特征用来回归预测飞行时间差。超声回波信号作为模型的输入层,中间层为提高模型性能,加速训练,使用五层卷积层... 飞行时间差是时差法超声波流量计的关键参数,决定表具的计量精度。该文采用卷积神经网络对超声回波信号进行特征提取,提取的特征用来回归预测飞行时间差。超声回波信号作为模型的输入层,中间层为提高模型性能,加速训练,使用五层卷积层、五层池化层及RELU激活函数提取信号特征,输出层回归预测飞行时间差,提高对时间差估计的精度。仿真研究表明,模型预测的准确率高于99%,且有较好的泛化能力。搭建实验平台,进行实验研究,结果表明,卷积神经网络模型用于预测超声回波信号飞行时间差有着较高的测量准确性,其中测量误差优于±1%,重复性优于0.2%。 展开更多
关键词 超声波气体流量计 飞行时间差检测 卷积神经网络模型 回波信号处理
在线阅读 下载PDF
卷积神经网络在近岸表层海温预报中的应用 被引量:5
17
作者 翁少佳 蔡锦海 +1 位作者 庞运禧 罗荣真 《热带海洋学报》 CAS CSCD 北大核心 2024年第1期40-47,共8页
针对数值预报和人工经验预报在近岸定点表层海温(sea surface temperature,SST)预报中预报准确度不高,将近岸台站定点SST预报转换为多元时间序列预测任务,应用卷积神经网络(convolutional neural networks,CNN)构建近岸台站定点SST时间... 针对数值预报和人工经验预报在近岸定点表层海温(sea surface temperature,SST)预报中预报准确度不高,将近岸台站定点SST预报转换为多元时间序列预测任务,应用卷积神经网络(convolutional neural networks,CNN)构建近岸台站定点SST时间序列变化模型,对近岸台站每日最高海温、最低海温、平均海温进行预报,并与人工经验方法和长短期记忆网络(long short-termmemory,LSTM)方法进行对比试验。结果显示,在测试数据中相比人工经验预报,CNN方法全年日最高海温预报平均绝对误差(mean absolute error,MAE)为0.36℃,平均下降0.14℃,均方根误差(root mean squared error,RMSE)为0.49℃,平均下降0.21℃,日最低海温预报MAE为0.36℃,平均下降0.17℃,RMSE为0.63℃,平均下降0.24℃,日平均海温预报MAE为0.30℃,RMSE为0.47℃,预报性能和LSTM模型预报性能相当。研究表明CNN应用于近岸SST预报具有可行性,能够有效地提高SST预报准确度,并且预报效果可以媲美LSTM。 展开更多
关键词 表层海温 近岸台站 多元时间序列 卷积神经网络
在线阅读 下载PDF
基于时间序列单维卷积神经网络的水泥熟料游离钙软测量方法 被引量:6
18
作者 赵彦涛 何永强 +2 位作者 贾利颖 杨黎明 郝晓辰 《计量学报》 CSCD 北大核心 2020年第9期1152-1162,共11页
水泥熟料游离钙(fCaO)含量对水泥质量和生产能耗有着重要影响,现阶段主要通过化学分析的方法离线测得水泥熟料fCaO含量,但是该方法对于烧成系统操作指导具有明显的滞后性。针对熟料fCaO无法在线实时监测的问题,提出基于多变量时间序列... 水泥熟料游离钙(fCaO)含量对水泥质量和生产能耗有着重要影响,现阶段主要通过化学分析的方法离线测得水泥熟料fCaO含量,但是该方法对于烧成系统操作指导具有明显的滞后性。针对熟料fCaO无法在线实时监测的问题,提出基于多变量时间序列单维卷积神经网络(TS-CNN)熟料fCaO软测量建模方法。该方法利用影响熟料fCaO的多个过程变量历史时间段的时间序列作为输入,结合水泥数据特性,采用单维卷积池化的方式提取各过程变量特征,同时降低网络的复杂度,最后经全连接层整合提取的局部信息。通过实验对比,结果表明基于TS-CNN的软测量方法预测精度更高、泛化能力更强。 展开更多
关键词 计量学 水泥熟料游离钙 单维卷积神经网络 时间序列 软测量模型
在线阅读 下载PDF
基于深度时间卷积神经网络与迁移学习的流程制造工艺过程质量时序关联预测 被引量:4
19
作者 阴艳超 施成娟 +1 位作者 邹朝普 刘孝保 《中国机械工程》 EI CAS CSCD 北大核心 2023年第14期1659-1671,共13页
针对流程生产多工艺参数时序耦合导致的生产质量难以准确预测的问题,提出了基于深度时间卷积神经网络与迁移学习的生产质量快速高效预测方法。借助序列到序列的学习框架,采用深度时间卷积神经网络和时序注意力机制构成的编码器提取多源... 针对流程生产多工艺参数时序耦合导致的生产质量难以准确预测的问题,提出了基于深度时间卷积神经网络与迁移学习的生产质量快速高效预测方法。借助序列到序列的学习框架,采用深度时间卷积神经网络和时序注意力机制构成的编码器提取多源关键时序特征,采用残差长短期记忆神经网络构成的解码器挖掘质量时序信息,引入迁移学习解决预测模型对生产质量在线预测适应性的问题。实验表明所提方法的预测精度与稳定性优势显著,且在小样本数据预测时具有较高的预测精度和计算效率。 展开更多
关键词 工艺过程质量 时序关联预测 序列到序列 时间卷积神经网络 迁移学习
在线阅读 下载PDF
基于金豺优化变分模态分解与时间卷积网络的过热汽温特性建模
20
作者 金秀章 赵术善 +2 位作者 畅晗 赵大勇 仲轩正 《中国电机工程学报》 北大核心 2025年第12期4759-4767,I0019,共10页
针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal opti... 针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal optimization,GJO)优化变分模态分解(variational mode decomposition,VMD)算法与GJO优化时间卷积神经网络(temporal convolutional network,TCN)的过热汽温系统特性模型。使用互信息(mutual information,MI)将机理分析得到的13个过热汽温特征变量进行排序并去除冗余变量;对筛选后的7个特征变量使用GJO-VMD算法进行分解,选择相关性较大的本征模态函数(intrinsic mode function,IMF)分量进行重构作为最终模型输入;最后,使用GJO-TCN建立过热汽温特性模型,并使用某660 MW燃煤电厂历史运行数据进行仿真实验。实验结果表明,基于GJO-VMD与GJO-TCN的过热汽温特性模型相较于TCN、长短期记忆网络(long short-term memory,LSTM)、GJO-LSTM,具有更高的预测精度。 展开更多
关键词 过热汽温 金豺算法 变分模态分解 时间卷积神经网络
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部