期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于二次模态分解重构及BiTCN-BiGRU模型的光伏短期发电功率预测
1
作者 文斌 章学勤 +2 位作者 付文龙 丁弈夫 封宣宇 《电力系统保护与控制》 北大核心 2025年第18期74-87,共14页
针对光伏功率序列具有非平稳性和波动性的特点导致预测模型预测精度偏低的问题,提出一种基于二次模态分解重构、双向时序卷积网络(bidirectional temporal convolutional network,BiTCN)-双向门控循环单元(bidirectional gated recircul... 针对光伏功率序列具有非平稳性和波动性的特点导致预测模型预测精度偏低的问题,提出一种基于二次模态分解重构、双向时序卷积网络(bidirectional temporal convolutional network,BiTCN)-双向门控循环单元(bidirectional gated recirculation unit,BiGRU)组合模型及与多策略改进沙猫群优化算法(multi-strategy improved sand cat swarm algorithm,MSCSO)相结合的光伏短期发电功率预测方法。首先,利用Spearman相关系数选取气象特征作为模型输入,并采用模糊C均值聚类方法进行相似日分类。其次,采用改进完全集合经验模态分解、变分模态分解对光伏功率序列进行分解并采用样本熵对分量进行重构。最后,建立Bi TCN-Bi GRU组合预测模型进行预测并通过MSCSO优化模型参数,将各分量预测结果叠加得到最终光伏功率预测值。通过与多种预测模型在不同天气条件和不同地区的对比分析,验证了所提模型具有更高的预测精度和良好的适应性。 展开更多
关键词 二次模态分解重构 沙猫群算法 双向时序卷积网络 双向门控循环单元 光伏功率预测
在线阅读 下载PDF
土石坝渗流预测的BiTCN-Attention-LSSVM模型研究
2
作者 傅蜀燕 杨石勇 +2 位作者 陈德辉 王子轩 欧斌 《水资源与水工程学报》 北大核心 2025年第1期118-128,共11页
为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN... 为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN从前、后两个方向捕获时序数据中的长期依赖关系,引入Attention机制帮助模型专注于与预测相关的关键局部特征,并将BiTCN-Attention深度处理后的特征输入LSSVM模型中进行预测,最后以2个不同的数据集分析了模型的预测效果。案例分析表明:与LSSVM、CNN-LSSVM和TCN-LSSVM相比,BiTCN-Attention-LSSVM模型预测的各项评价指标均为最优,在土石坝测压管水位预测中展现出更高的模型精度和稳定性;BiTCN与Attention的相互结合能够更好地提取时序数据中的相互依赖关系,将BiTCN-Attention提取的特征输入LSSVM中进行预测可获得良好的预测性能,数据集扩充处理后有效提高了模型的学习能力。 展开更多
关键词 土石坝测压管水位 渗流预测 双向时序卷积神经网络 注意力机制 最小二乘支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部