期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于信号分解和深度学习的农产品价格预测
被引量:
21
1
作者
王润周
张新生
王明虎
《农业工程学报》
EI
CAS
CSCD
北大核心
2022年第24期256-267,共12页
农产品价格的稳定对社会经济与农业发展有重要意义,但农产品价格的波动具有非平稳、非线性、波动性大的特性,较难精确预测。该研究基于信号分解和深度学习,提出一种分解-重构-提取-关联-输出的农产品价格预测模型(CT-BiSeq2seq),并且加...
农产品价格的稳定对社会经济与农业发展有重要意义,但农产品价格的波动具有非平稳、非线性、波动性大的特性,较难精确预测。该研究基于信号分解和深度学习,提出一种分解-重构-提取-关联-输出的农产品价格预测模型(CT-BiSeq2seq),并且加入平均气温、养殖成本(大猪配合饲料与尿素价格)、群众关注度等多维度数据来提高模型的预测精度。首先,采用互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)方法把复杂的原始价格序列分解为简单序列。其次,分析皮尔逊相关系数及分解后的子序列,把原始价格序列重构为高频项、低频项、残差项。再经过时间卷积网络(Temporal Convolutional Network,TCN)提取重构序列的数据特征。随后,构建Biseq2seq模型,解码器引入双向长短期记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)加强序列数据间的全局关联。最后,通过解码器的LSTM网络输出预测值。以北京丰台区批发市场的白条猪肉价格进行实证分析,该研究提出的CT-BiSeq2seq模型的预测性能显著优于其他价格预测基准模型,在滞后天数为11 d达到最优效果。在其他数据集也有精确和稳定的预测效果,菠菜、苹果,鸡蛋的均方误差分别为0.6277、0.4632、0.5526元^(2)/kg^(2),平均绝对误差分别为0.5431、0.4425、0.5339元/kg,平均绝对百分比误差分别为3.2047%、2.2361%、2.2314%。同时根据不同数据集的结果发现,价格波动大的农产品适合采用较大的滞后天数,价格波动小的农产品适合采用较小的滞后天数。该模型可以为预测农产品的价格波动提供参考。
展开更多
关键词
农产品
价格预测
互补集合经验模态分解
时间卷积网络
双向序列到序列模型
长短期记忆网络
在线阅读
下载PDF
职称材料
题名
基于信号分解和深度学习的农产品价格预测
被引量:
21
1
作者
王润周
张新生
王明虎
机构
西安建筑科技大学管理学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2022年第24期256-267,共12页
基金
国家自然科学基金(41877527)
陕西省重点产业创新链(群)-工业领域项目(2022ZDLGY06-04)
陕西省教育厅重点科学研究计划项目(20JT033)。
文摘
农产品价格的稳定对社会经济与农业发展有重要意义,但农产品价格的波动具有非平稳、非线性、波动性大的特性,较难精确预测。该研究基于信号分解和深度学习,提出一种分解-重构-提取-关联-输出的农产品价格预测模型(CT-BiSeq2seq),并且加入平均气温、养殖成本(大猪配合饲料与尿素价格)、群众关注度等多维度数据来提高模型的预测精度。首先,采用互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)方法把复杂的原始价格序列分解为简单序列。其次,分析皮尔逊相关系数及分解后的子序列,把原始价格序列重构为高频项、低频项、残差项。再经过时间卷积网络(Temporal Convolutional Network,TCN)提取重构序列的数据特征。随后,构建Biseq2seq模型,解码器引入双向长短期记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)加强序列数据间的全局关联。最后,通过解码器的LSTM网络输出预测值。以北京丰台区批发市场的白条猪肉价格进行实证分析,该研究提出的CT-BiSeq2seq模型的预测性能显著优于其他价格预测基准模型,在滞后天数为11 d达到最优效果。在其他数据集也有精确和稳定的预测效果,菠菜、苹果,鸡蛋的均方误差分别为0.6277、0.4632、0.5526元^(2)/kg^(2),平均绝对误差分别为0.5431、0.4425、0.5339元/kg,平均绝对百分比误差分别为3.2047%、2.2361%、2.2314%。同时根据不同数据集的结果发现,价格波动大的农产品适合采用较大的滞后天数,价格波动小的农产品适合采用较小的滞后天数。该模型可以为预测农产品的价格波动提供参考。
关键词
农产品
价格预测
互补集合经验模态分解
时间卷积网络
双向序列到序列模型
长短期记忆网络
Keywords
agricultural price
price forecast
complementary ensemble empirical mode decomposition
temporal convolutional network
bi-directional sequence to sequence model
long-short term memory
分类号
F304.2 [经济管理—产业经济]
TP301.6 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于信号分解和深度学习的农产品价格预测
王润周
张新生
王明虎
《农业工程学报》
EI
CAS
CSCD
北大核心
2022
21
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部