目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词...目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词抽取的双向编码器表征法和双向长短时记忆网络的深度学习模型(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory,BERT-BiLSTM)。该模型通过对不正常事件文本进行信息抽取,过滤其中无用信息,并将双向编码器表征法(Bidirectional Encoder Representations from Transformers,BERT)模型输出的特征向量序列作为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的输入序列,以对空管不正常事件文本风险识别任务进行对比试验。试验结果显示,在风险识别试验中,基于空管专业信息词抽取的BERT-BiLSTM模型相比于通用领域的BERT模型,风险识别准确率提升了3百分点。可以看出该模型有效提升了空管安全信息处理能力,能够有效识别空管部门日常运行中出现的不正常事件所带来的风险,同时可以为空管安全领域信息挖掘相关任务提供基础参考。展开更多
针对稀疏自动编码器(Sparse auto encoder,SAE)采用sigmoid激活函数容易造成梯度消失的问题,用一种新的Tan函数替代原有的sigmoid函数;针对SAE采用Kullback-Leibler(KL)散度进行稀疏性约束在回归预测方面的局限性,以dropout机制替代KL...针对稀疏自动编码器(Sparse auto encoder,SAE)采用sigmoid激活函数容易造成梯度消失的问题,用一种新的Tan函数替代原有的sigmoid函数;针对SAE采用Kullback-Leibler(KL)散度进行稀疏性约束在回归预测方面的局限性,以dropout机制替代KL散度实现网络的稀疏性.利用改进SAE对滚动轴承振动信号进行无监督深层特征自适应提取,无需人工设计标签进行有监督微调.同时,考虑到滚动轴承剩余使用寿命(Remaining useful life,RUL)预测方法一般仅考虑过去信息而忽略未来信息,引入双向长短时记忆网络(Bi-directional long short-term memory,Bi-LSTM)构建滚动轴承RUL的预测模型.在2个轴承数据集上的实验结果均表明,所提基于改进SAE和Bi-LSTM的滚动轴承RUL预测方法不仅可以提高模型的收敛速度而且具有较低的预测误差.展开更多
剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长...剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长短时记忆网络-变分自编码器(Bidirectional Long Short Term-Memory-Variational Auto Encoder, BLSTM-VAE)的RUL预测方法。该方法首先进行数据预处理,包括数据降噪、滑动窗口分段和标签修正等步骤。然后设计基于BLSTM的VAE型特征提取器,以有效提取时间序列数据中的非线性关系和长距离依赖关系。最后提出一种基于流形学习的退化趋势平滑约束模块,通过局部不变性假设来增强模型的稳健性和泛化能力。通过航空发动机数据集数据集进行验证,结果表明所提出的RUL预测方法在数据集上的表现优于现有的多种RUL预测方法,具有更低的预测误差和更高的稳定性。展开更多
为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素...为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素识别的专业性、精准度要求较高等问题,结合自然灾害系统理论的风险要素框架,提出了一种基于双向编码器表征法-双向长短期记忆-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field,BERT-BiLSTM-CRF)的识别方法,并开展了一系列模型验证试验。对比试验结果表明,该模型在准确率、召回率、F_(1)三项指标上均有较好表现,其中准确率为84.62%,召回率为86.19%,F_(1)为85.35%,优于其他对比模型。消融试验结果表明,BERT预训练模型对于该模型性能有着更为显著的影响。综合上述试验结果,可以验证该模型能够有效识别城市内涝舆情信息中的各类风险要素,进而为城市内涝灾害风险管控的数智化转型提供研究依据。展开更多
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N...非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。展开更多
文摘目前,空管各类安全管理信息化平台积累了大量非结构化文本数据,但未得到充分利用,为了挖掘空管不正常事件中潜藏的风险,研究利用收集的四千余条空管站不正常事件数据和自构建的4836个空管领域专业术语词,提出了一个基于空管专业信息词抽取的双向编码器表征法和双向长短时记忆网络的深度学习模型(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory,BERT-BiLSTM)。该模型通过对不正常事件文本进行信息抽取,过滤其中无用信息,并将双向编码器表征法(Bidirectional Encoder Representations from Transformers,BERT)模型输出的特征向量序列作为双向长短时记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)的输入序列,以对空管不正常事件文本风险识别任务进行对比试验。试验结果显示,在风险识别试验中,基于空管专业信息词抽取的BERT-BiLSTM模型相比于通用领域的BERT模型,风险识别准确率提升了3百分点。可以看出该模型有效提升了空管安全信息处理能力,能够有效识别空管部门日常运行中出现的不正常事件所带来的风险,同时可以为空管安全领域信息挖掘相关任务提供基础参考。
文摘该研究致力于构建一个高质量的数据集,用于南美白对虾养殖领域的命名实体识别(named entity recognition,NER)任务,命名为VamNER。为确保数据集的多样性,从CNKI数据库中收集了近10年的高质量论文,并结合权威书籍进行语料构建。邀请专家讨论实体类型,并经过专业培训的标注人员使用IOB2标注格式进行标注,标注过程分为预标注和正式标注两个阶段以提高效率。在预标注阶段,标注者间一致性(inter-annotation agreement,IAA)达到0.87,表明标注人员的一致性较高。最终,VamNER包含6115个句子,总字符数达384602,涵盖10个实体类型,共有12814个实体。研究通过与多个通用领域数据集和一个特定领域数据集进行比较,揭示了VamNER的独特特性。在实验中使用了预训练的基于变换器的双向编码器表示(bidirectional encoder representations from Transformers,BERT)模型、双向长短期记忆神经网络(bidirectional long short-term memory network,BiLSTM)和条件随机场模型(conditional random fields,CRF),最优模型在测试集上的F1值达到82.8%。VamNER成为首个专注于南美白对虾养殖领域的NER数据集,为中文特定领域NER研究提供了丰富资源,有望推动水产养殖领域NER研究的发展。
文摘针对稀疏自动编码器(Sparse auto encoder,SAE)采用sigmoid激活函数容易造成梯度消失的问题,用一种新的Tan函数替代原有的sigmoid函数;针对SAE采用Kullback-Leibler(KL)散度进行稀疏性约束在回归预测方面的局限性,以dropout机制替代KL散度实现网络的稀疏性.利用改进SAE对滚动轴承振动信号进行无监督深层特征自适应提取,无需人工设计标签进行有监督微调.同时,考虑到滚动轴承剩余使用寿命(Remaining useful life,RUL)预测方法一般仅考虑过去信息而忽略未来信息,引入双向长短时记忆网络(Bi-directional long short-term memory,Bi-LSTM)构建滚动轴承RUL的预测模型.在2个轴承数据集上的实验结果均表明,所提基于改进SAE和Bi-LSTM的滚动轴承RUL预测方法不仅可以提高模型的收敛速度而且具有较低的预测误差.
文摘剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长短时记忆网络-变分自编码器(Bidirectional Long Short Term-Memory-Variational Auto Encoder, BLSTM-VAE)的RUL预测方法。该方法首先进行数据预处理,包括数据降噪、滑动窗口分段和标签修正等步骤。然后设计基于BLSTM的VAE型特征提取器,以有效提取时间序列数据中的非线性关系和长距离依赖关系。最后提出一种基于流形学习的退化趋势平滑约束模块,通过局部不变性假设来增强模型的稳健性和泛化能力。通过航空发动机数据集数据集进行验证,结果表明所提出的RUL预测方法在数据集上的表现优于现有的多种RUL预测方法,具有更低的预测误差和更高的稳定性。
文摘为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素识别的专业性、精准度要求较高等问题,结合自然灾害系统理论的风险要素框架,提出了一种基于双向编码器表征法-双向长短期记忆-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field,BERT-BiLSTM-CRF)的识别方法,并开展了一系列模型验证试验。对比试验结果表明,该模型在准确率、召回率、F_(1)三项指标上均有较好表现,其中准确率为84.62%,召回率为86.19%,F_(1)为85.35%,优于其他对比模型。消融试验结果表明,BERT预训练模型对于该模型性能有着更为显著的影响。综合上述试验结果,可以验证该模型能够有效识别城市内涝舆情信息中的各类风险要素,进而为城市内涝灾害风险管控的数智化转型提供研究依据。
文摘非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。