金属铝在航空航天、军事国防、电子通信等领域具有重要应用,对铝材料表面光谱偏振散射特性的研究有助于丰富材料的光学信息,能够为铝材料的应用提供数据支撑.首先基于一套传统双向反射分布函数(bidirectional reflectance distribution ...金属铝在航空航天、军事国防、电子通信等领域具有重要应用,对铝材料表面光谱偏振散射特性的研究有助于丰富材料的光学信息,能够为铝材料的应用提供数据支撑.首先基于一套传统双向反射分布函数(bidirectional reflectance distribution function,BRDF)测量装置在近红外波段测量了粗糙铝表面的光谱偏振BRDF,并分析了入射天顶角、粗糙度等因素对测量结果的影响.测量结果表明:入射角、波长、偏振态和表面粗糙度对BRDF有显著影响.其次,分别采用Beckmann分布和指数分布概率密度分布函数建立了BRDF模型,并对实验结果进行了拟合.通过对比能够发现:对于同一样品和相同入射条件,不同的模型能够得到不同的拟合结果;对于不同粗糙度的样品采用不同的模型可能得到更好的拟合结果.展开更多
The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of th...The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of the Drude Model. The bi-directional reflection distribution function (BRDF) for both TM mode and TE mode were obtained and compared with the highly accurate experimental data from the earlier work. The incident wavelength varies from 1.152 μm to 3.392 μm and incident angle is at 300-70°, respectively. The results show that, the predicted values and experimental results are in good agreement. The highly specular peak in the BRDF is reproduced in the numerical simulations, and the increase of the TM mode BRDF is found to be attributed to the effect of a variation in the optical constant at the incident wavelength period.展开更多
The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.Th...The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.展开更多
文摘金属铝在航空航天、军事国防、电子通信等领域具有重要应用,对铝材料表面光谱偏振散射特性的研究有助于丰富材料的光学信息,能够为铝材料的应用提供数据支撑.首先基于一套传统双向反射分布函数(bidirectional reflectance distribution function,BRDF)测量装置在近红外波段测量了粗糙铝表面的光谱偏振BRDF,并分析了入射天顶角、粗糙度等因素对测量结果的影响.测量结果表明:入射角、波长、偏振态和表面粗糙度对BRDF有显著影响.其次,分别采用Beckmann分布和指数分布概率密度分布函数建立了BRDF模型,并对实验结果进行了拟合.通过对比能够发现:对于同一样品和相同入射条件,不同的模型能够得到不同的拟合结果;对于不同粗糙度的样品采用不同的模型可能得到更好的拟合结果.
基金Project(N110204015) supported by the Fundamental Research Funds for the Central Universities
文摘The radiative properties of a gold surface with one-dimensional Gaussian random roughness distribution were obtained with the finite-difference time-domain (FDTD) method and the recursive convolution treatment of the Drude Model. The bi-directional reflection distribution function (BRDF) for both TM mode and TE mode were obtained and compared with the highly accurate experimental data from the earlier work. The incident wavelength varies from 1.152 μm to 3.392 μm and incident angle is at 300-70°, respectively. The results show that, the predicted values and experimental results are in good agreement. The highly specular peak in the BRDF is reproduced in the numerical simulations, and the increase of the TM mode BRDF is found to be attributed to the effect of a variation in the optical constant at the incident wavelength period.
基金Project(2009AA05Z215) supported by the National High-Tech Research and Development Program of China
文摘The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.