期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
二维投影非负矩阵分解算法及其在人脸识别中的应用 被引量:32
1
作者 方蔚涛 马鹏 +2 位作者 成正斌 杨丹 张小洪 《自动化学报》 EI CSCD 北大核心 2012年第9期1503-1512,共10页
建立在最小化非负矩阵分解损失函数上的人脸识别算法需同时计算基矩阵和系数矩阵,导致求解这类问题十分耗时.本文把非负属性引入二维主成分分析(2-dimensional principal component analysis,2DPCA)中,提出了一种新的二维投影非负矩阵分... 建立在最小化非负矩阵分解损失函数上的人脸识别算法需同时计算基矩阵和系数矩阵,导致求解这类问题十分耗时.本文把非负属性引入二维主成分分析(2-dimensional principal component analysis,2DPCA)中,提出了一种新的二维投影非负矩阵分解(2-dimensional projective non-negative matrix factorization,2DPNMF)人脸识别算法.该算法在保持人脸图像的局部结构情况下,突破了最小化非负矩阵分解损失函数的约束,仅需计算投影矩阵(基矩阵),从而降低了计算复杂度.本文从理论上证明了所提出算法的收敛性,同时,使用了YALE、FERET和AR三个人脸库进行实验,结果表明2DPNMF不仅识别率高,而且速度优于非负矩阵分解和二维主成分分析. 展开更多
关键词 主成分分析 矩阵分解 人脸识别 特征提取
在线阅读 下载PDF
二维非负矩阵分解在齿轮故障诊断中的应用 被引量:9
2
作者 李兵 米双山 +2 位作者 刘鹏远 刘东升 张培林 《振动.测试与诊断》 EI CSCD 北大核心 2012年第5期836-840,868,共5页
针对齿轮故障信号时频分布识别问题,提出采用二维非负矩阵分解技术提取时频分布矩阵特征参数的方法。采用S变换技术将齿轮故障信号变换至时频域,为克服传统的一维非负矩阵分解对矩阵向量化带来的维数过高和结构信息损失问题,提出采用二... 针对齿轮故障信号时频分布识别问题,提出采用二维非负矩阵分解技术提取时频分布矩阵特征参数的方法。采用S变换技术将齿轮故障信号变换至时频域,为克服传统的一维非负矩阵分解对矩阵向量化带来的维数过高和结构信息损失问题,提出采用二维非负矩阵分解技术直接对信号时频分布矩阵提取特征参数。对齿轮5种状态下信号时频分布矩阵的特征提取和分类结果表明,二维非负矩阵分解技术无论在计算效率还是分类精度上都明显优于一维非负矩阵分解技术。 展开更多
关键词 齿轮 故障诊断 特征提取 时频分布 矩阵分解
在线阅读 下载PDF
二维局部非负矩阵分解的路网态势算法 被引量:1
3
作者 许榕 吴聪 +1 位作者 蒋士正 陈启美 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第8期1131-1136,1143,共7页
针对路网态势评测算法存在限于断面、依赖单一指标等的不足,在解析测量指标和测量断面的相关性及局部非负矩阵分解(LNMF)算法的基础上,提出了二维局部非负矩阵分解2DLNMF算法,通过选择合适参数对路网数据进行降维处理,提取路网特征数据... 针对路网态势评测算法存在限于断面、依赖单一指标等的不足,在解析测量指标和测量断面的相关性及局部非负矩阵分解(LNMF)算法的基础上,提出了二维局部非负矩阵分解2DLNMF算法,通过选择合适参数对路网数据进行降维处理,提取路网特征数据,从而实现路网态势评测.仿真结果表明,使用2D-LNMF算法路网态势评测结果更加准确,而在线评测准确性达到95.69%. 展开更多
关键词 路网态势 聚类 局部矩阵分解 特征提取
在线阅读 下载PDF
二维卷积非负矩阵分解的初值确定混合算法
4
作者 付强 景博 +3 位作者 何鹏举 王赟 司书浩 刘刚易 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第5期125-130,共6页
为解决二维卷积非负矩阵分解算法存在初值敏感,且传统随机初始化确定的初始值容易使算法收敛到结果相对不好的局部最优值的问题,通过结合K均值聚类、奇异值分解和主成分分析方法,提出了一种适用于二维卷积非负矩阵分解初始值确定的混合... 为解决二维卷积非负矩阵分解算法存在初值敏感,且传统随机初始化确定的初始值容易使算法收敛到结果相对不好的局部最优值的问题,通过结合K均值聚类、奇异值分解和主成分分析方法,提出了一种适用于二维卷积非负矩阵分解初始值确定的混合算法.首先,利用K均值聚类方法得到聚类中心作为系数矩阵(H矩阵)的初始值,避开了传统初始化不确定系数矩阵带来的分解结果不唯一问题;其次,考虑到相比一维卷积非负矩阵分解算法,二维卷积非负矩阵分解算法的基矩阵(W矩阵)个数更多,利用奇异值分解和主成分分析方法交替产生基矩阵的初始值,克服了单个算法产生的初始化误差问题.在相同参数环境下将本文算法和现有初始化算法的分解收敛性能进行对比实验,结果表明本文算法相比其他同类算法具有更好的分解性能并具有更好的收敛性.进一步加入噪声进行实验,在白噪声为-1 dB~10 dB的不同信噪比环境下,本文算法均能快速实现信号的分离,对于噪声数据具有很强的鲁棒性.采用混合算法确定初值,更有利于实现二维卷积非负矩阵分解的实时性和高性能. 展开更多
关键词 卷积矩阵分解 初值敏感 混合算法 K均值聚类 奇异值分解
在线阅读 下载PDF
基于二维非负矩阵分解的1kb/s WI语音编码算法 被引量:3
5
作者 薛二娟 鲍长春 李如玮 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1574-1579,共6页
本文针对波形内插(WI)语音编码模型和参数量化等技术进行了研究,并最终提出了一种基于二维非负矩阵分解的1kb/s波形内插(2DNMF-WI)语音编码算法.文中采用二维非负矩阵分解(2D-NMF)方法来分解语音特征波形(CW),该分解方法在行和列两个方... 本文针对波形内插(WI)语音编码模型和参数量化等技术进行了研究,并最终提出了一种基于二维非负矩阵分解的1kb/s波形内插(2DNMF-WI)语音编码算法.文中采用二维非负矩阵分解(2D-NMF)方法来分解语音特征波形(CW),该分解方法在行和列两个方向上同时压缩CW幅度谱矩阵的维数,使得CW幅度谱矩阵降维后得到的编码矩阵维数较小,易于量化.此外,在甚低速率语音编码中,由于没有足够的比特数来描述编码参数,往往很难得到高质量的合成语音.本算法采用两帧联合编码、帧间后向预测三级矢量量化、离散余弦变换(DCT)和分裂式矩阵量化等技术来降低编码速率和改善音质.非正式主观听觉测试显示,1kb/s 2DNMF-WI编码器合成语音的质量稍差于2kb/s的NMF-WI语音编码算法. 展开更多
关键词 语音编码 波形内插 特征波形 矩阵分解 两帧联合
在线阅读 下载PDF
基于伽玛-泊松分布和图正则化的单细胞非负矩阵分解算法
6
作者 龙法宁 潘伟权 苏秀秀 《广西科学》 北大核心 2024年第5期925-938,共14页
单细胞RNA测序(Single-cell RNA sequencing, scRNA-seq)可以获取单细胞水平的基因表达谱。然而,目前许多基于非负矩阵分解(Non-negative Matrix Factorization, NMF)的降维算法在细胞类型识别中往往忽视了数据概率分布和细胞之间的拓... 单细胞RNA测序(Single-cell RNA sequencing, scRNA-seq)可以获取单细胞水平的基因表达谱。然而,目前许多基于非负矩阵分解(Non-negative Matrix Factorization, NMF)的降维算法在细胞类型识别中往往忽视了数据概率分布和细胞之间的拓扑关系,无法较好地兼顾数据的全局结构和局部结构。为了克服传统NMF降维算法在处理高维含噪稀疏数据时的不足,本文提出一种改进的单细胞非负矩阵分解算法GPNMF。GPNMF结合了伽玛-泊松(Gamma-Poisson)分布假设和图正则化技术,通过迭代更新因子分解矩阵以最小化重构误差,从而有效地保留数据的局部结构与全局结构。通过引入约束优化并稳定化模型,GPNMF在分解单细胞表达数据时能够提供更为稳健和可靠的结果。最后,利用真实scRNA-seq数据进行实验,验证了GPNMF的有效性,并展示了其在单细胞基因表达数据轨迹推断分析中的潜在应用。 展开更多
关键词 单细胞RNA测序 图正则化 伽玛-泊松分布 矩阵分解(NMF)
在线阅读 下载PDF
基于非负矩阵分解更新规则的部分可观察马尔可夫决策过程信念状态空间降维算法 被引量:1
7
作者 仵博 陈鑫 +1 位作者 郑红燕 冯延蓬 《电子与信息学报》 EI CSCD 北大核心 2013年第12期2901-2907,共7页
针对求解部分可观察马尔可夫决策过程(POMDP)规划问题时遭遇的"维数诅咒",该文提出了一种基于非负矩阵分解(NMF)更新规则的POMDP信念状态空间降维算法,分两步实现低误差高维降维。第1步,利用POMDP的结构特性,将状态、观察和... 针对求解部分可观察马尔可夫决策过程(POMDP)规划问题时遭遇的"维数诅咒",该文提出了一种基于非负矩阵分解(NMF)更新规则的POMDP信念状态空间降维算法,分两步实现低误差高维降维。第1步,利用POMDP的结构特性,将状态、观察和动作进行可分解表示,然后利用动态贝叶斯网络的条件独立对其转移函数进行分解压缩,并去除概率为零的取值,降低信念状态空间的稀疏性。第2步,采用信念状态空间值直接降维方法,使降维后求出的近似最优策略与原最优策略保持一致,使用NMF更新规则来更新信念状态空间,避免Krylov迭代,加快降维速度。该算法不仅保证降维前后值函数不发生改变,又保留了其分段线性凸特性。实验结果表明,该算法具有较低误差率和较高收敛性。 展开更多
关键词 信息处理 部分可观察马尔可夫决策过程 信念状态空间 矩阵分解 值直接压缩 数灾
在线阅读 下载PDF
非负矩阵低秩分解的交替二次规划算法
8
作者 阳明盛 刘力军 《大连理工大学学报》 EI CAS CSCD 北大核心 2014年第3期365-370,共6页
非负矩阵分解算法有多种,但都存在着各自的缺陷.在现有工作的基础上,将非负矩阵分解(NMF)模型转化为一组(两个)二次凸规划模型,利用二次凸规划有解的充分必要条件推导出迭代公式,进行交替迭代,可求出问题的解.得到的解不仅具有某种最优... 非负矩阵分解算法有多种,但都存在着各自的缺陷.在现有工作的基础上,将非负矩阵分解(NMF)模型转化为一组(两个)二次凸规划模型,利用二次凸规划有解的充分必要条件推导出迭代公式,进行交替迭代,可求出问题的解.得到的解不仅具有某种最优性、稀疏性,还避免了约束非线性规划求解的复杂过程和大量的计算.证明了迭代的收敛性,且收敛速度快于已知的方法,对于大规模数据模型尤能显示出其优越性. 展开更多
关键词 矩阵分解 次凸规划 大规模数据模型
在线阅读 下载PDF
一种基于加权非负矩阵分解的多维用户人格特质识别算法 被引量:6
9
作者 王萌萌 左万利 +1 位作者 王英 王鑫 《计算机学报》 EI CSCD 北大核心 2016年第12期2562-2577,共16页
随着社会媒体的普及,用户信息的爆炸式增长为深入理解在线用户行为提供了非常丰富的信息源.由于用户人格特质是用户行为的主要驱动力,人格特质的差异可能会对用户的在线行为产生一定的影响,因此,用户人格特质识别问题近年来受到了众多... 随着社会媒体的普及,用户信息的爆炸式增长为深入理解在线用户行为提供了非常丰富的信息源.由于用户人格特质是用户行为的主要驱动力,人格特质的差异可能会对用户的在线行为产生一定的影响,因此,用户人格特质识别问题近年来受到了众多学者的关注.首先,基于用户网络结构信息和用户发布内容信息序列构建用户人格特质识别特征,并根据特征重要性为其分配权重.然后,以用户人格特质相关因子约束目标函数,从用户社会网络结构特征、语言学特征和情感特征三个维度利用非负矩阵分解方法识别社会网络中用户的五大人格特质.最后,在真实的数据集上验证了提出框架的有效性,并通过实验以更细的粒度进一步验证了用户人格特质之间相关性的存在,同时证明了特征权重和用户人格特质间的相关性在用户人格特质识别问题中的重要性.文中为社会网络中的多维用户人格特质识别问题提供了一种新思路. 展开更多
关键词 用户人格特质识别 矩阵分解 用户人格特质相关因子 五大人格特质 社交网络
在线阅读 下载PDF
基于非负矩阵分解最小二乘的多视角行人分类算法 被引量:1
10
作者 张英 孙浩 计科峰 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期10-15,共6页
针对不同视角的行人样本具有较大的类内差异性,造成多视角行人识别错误率较高的问题,提出一种基于非负矩阵分解最小二乘的多视角行人分类算法.采用非负矩阵分解的方法对多视角的行人样本图像进行子空间分解,提取基向量;引入协同表示的... 针对不同视角的行人样本具有较大的类内差异性,造成多视角行人识别错误率较高的问题,提出一种基于非负矩阵分解最小二乘的多视角行人分类算法.采用非负矩阵分解的方法对多视角的行人样本图像进行子空间分解,提取基向量;引入协同表示的方法并在最小二乘约束下,对子空间进行稀疏表示获得稀疏分解系数;利用近邻子空间方法对分解系数进行分类.基于自行构建的多视角行人数据库进行对比实验,结果表明该算法的准确性和有效性优于其他方法. 展开更多
关键词 矩阵分解 最小 稀疏表示 多视角分类
在线阅读 下载PDF
基于改进对称二值非负矩阵分解的重叠社区发现方法 被引量:2
11
作者 成其伟 陈启买 +1 位作者 贺超波 刘海 《计算机应用》 CSCD 北大核心 2020年第11期3203-3210,共8页
针对复杂网络社区结构具有重叠性的问题,目前已提出许多不同类型的解决方法,其中基于对称二值非负矩阵分解(SBNMF)的重叠社区发现方法是具有代表性的方法。然而,SBNMF在面对社区内部链接稀疏的网络时,其重叠社区发现性能低下,为此提出... 针对复杂网络社区结构具有重叠性的问题,目前已提出许多不同类型的解决方法,其中基于对称二值非负矩阵分解(SBNMF)的重叠社区发现方法是具有代表性的方法。然而,SBNMF在面对社区内部链接稀疏的网络时,其重叠社区发现性能低下,为此提出一种基于改进SBNMF(ISBNMF)的重叠社区发现方法。首先利用对称非负矩阵分解得到的因子矩阵构建社区内部链接稠密的新网络,然后再使用基于Frobenius范数的SBNMF模型对新网络的邻接矩阵进行分解,最后通过网格搜索法或梯度下降法得到可以显式指示节点的社区隶属关系的二值矩阵。在人工合成的和真实的网络数据集上进行大量实验,结果表明ISBNMF的社区发现性能优于SBNMF和其他代表性方法。 展开更多
关键词 复杂网络 重叠社区发现 对称矩阵分解 网格搜索 梯度下降
在线阅读 下载PDF
基于非负矩阵分解的语音深层低维特征提取方法 被引量:4
12
作者 秦楚雄 张连海 《数据采集与处理》 CSCD 北大核心 2017年第5期921-930,共10页
作为一种基于深层神经网络提取的低维特征,瓶颈特征在连续语音识别中取得了很大的成功。然而训练瓶颈结构的深层神经网络时,瓶颈层的存在会降低网络输出层的帧准确率,进而反过来影响该特征的性能。针对这一问题,本文基于非负矩阵分解算... 作为一种基于深层神经网络提取的低维特征,瓶颈特征在连续语音识别中取得了很大的成功。然而训练瓶颈结构的深层神经网络时,瓶颈层的存在会降低网络输出层的帧准确率,进而反过来影响该特征的性能。针对这一问题,本文基于非负矩阵分解算法,提出一种利用不包含瓶颈层的深层神经网络提取低维特征的方法。该方法利用半非负矩阵分解和凸非负矩阵分解算法对隐含层权值矩阵分解得到基矩阵,将其作为新的特征层权值矩阵,然后在该层不设置偏移向量的情况下,通过数据前向传播提取新型特征。实验表明,该特征具有较为稳定的规律,且适用于不同的识别任务和网络结构。当使用训练数据充足的语料进行实验时,该特征表现出同瓶颈特征几乎相同的识别性能;而在低资源环境下,基于该特征识别系统的识别率明显优于深层神经网络混合识别系统和瓶颈特征识别系统。 展开更多
关键词 连续语音识别 深层神经网络 矩阵分解 矩阵分解 特征
在线阅读 下载PDF
基于2维非负矩阵分解的时频图像压缩在柴油机故障诊断中的应用 被引量:2
13
作者 史润泽 李兵 《兵工自动化》 2019年第7期21-25,共5页
针对1维非负矩阵分解技术对2维矩阵特征降维时,会产生数据量巨大、计算效率低下和丢失原始数据结构信息的问题,引入2维非负矩阵分解技术。通过S变换得到振动信号的时频图像,用1DNMF和2DNMF分别压缩时频图像,对压缩后的图像信息进行分类... 针对1维非负矩阵分解技术对2维矩阵特征降维时,会产生数据量巨大、计算效率低下和丢失原始数据结构信息的问题,引入2维非负矩阵分解技术。通过S变换得到振动信号的时频图像,用1DNMF和2DNMF分别压缩时频图像,对压缩后的图像信息进行分类,对柴油机在8种状态下的振动信号进行采集,并采用最近邻分类器、朴素贝叶斯分类器和支持向量机分类器进行实验对比。结果表明,2维非负矩阵分解技术比原始的1维技术计算效率更高,故障诊断更精准。 展开更多
关键词 时频图像压缩 2矩阵分解 柴油机 特征提取 故障诊断
在线阅读 下载PDF
不完全非负矩阵分解的加速算法 被引量:13
14
作者 史加荣 焦李成 尚凡华 《电子学报》 EI CAS CSCD 北大核心 2011年第2期291-295,共5页
非负矩阵分解(NMF)已成为数据分析与处理的一种日益流行的方法.当数据矩阵不完全时,可用加权非负矩阵分解(WNMF)来分解矩阵.但是在WNMF算法中,对于给定的搜索方向,步长的选取一般来说不是最优的.本文研究了不完全非负矩阵分解(INMF)问题... 非负矩阵分解(NMF)已成为数据分析与处理的一种日益流行的方法.当数据矩阵不完全时,可用加权非负矩阵分解(WNMF)来分解矩阵.但是在WNMF算法中,对于给定的搜索方向,步长的选取一般来说不是最优的.本文研究了不完全非负矩阵分解(INMF)问题,提出了加速算法(AINMF).首先,将INMF问题转化为交替地求解两个非负最小二乘(NNLS)问题.对于每个NNLS问题,在搜索方向上采用精确的步长.接着,分析了NNLS问题的算法复杂度.最后,试验结果证实了AINMF优于WNMF. 展开更多
关键词 矩阵分解 不完全矩阵分解 数据丢失问题 加权矩阵分解 最小
在线阅读 下载PDF
具有普适性的改进非负矩阵分解图像特征提取方法 被引量:12
15
作者 贾旭 孙福明 +1 位作者 李豪杰 曹玉东 《计算机应用》 CSCD 北大核心 2018年第1期233-237,254,共6页
为提高图像特征提取的普适性,提出了一种基于改进非负矩阵分解(NMF)的图像特征提取方法。首先,考虑到提取的图像特征的实际意义,选用非负矩阵分解模型进行图像特征的降维处理;其次,为实现用较小数量系数来描述图像特征,将稀疏约束作为... 为提高图像特征提取的普适性,提出了一种基于改进非负矩阵分解(NMF)的图像特征提取方法。首先,考虑到提取的图像特征的实际意义,选用非负矩阵分解模型进行图像特征的降维处理;其次,为实现用较小数量系数来描述图像特征,将稀疏约束作为非负矩阵分解模型的正则项之一;然后,为使降维后优化得到的特征具有较好的类间区分性,将聚类属性作为非负矩阵分解的另一个正则项;最后,通过对模型的梯度下降优化求解,获得最优的特征基向量与图像特征向量。实验结果表明,针对3种图像数据库,所提的图像特征更有利于图像正确分类或识别,错误接受率(FAR)与错误拒绝率(FRR)分别可以降低到0.021与0.025。 展开更多
关键词 矩阵分解 特征提取 稀疏表示 梯度下降法 特征降
在线阅读 下载PDF
基于线性投影结构的非负矩阵分解 被引量:22
16
作者 李乐 章毓晋 《自动化学报》 EI CSCD 北大核心 2010年第1期23-39,共17页
非负矩阵分解(Non-negative matrix factorization,NMF)是一个近年来非常流行的非负数据处理方法,它常用于维数约减、特征提取和数据挖掘等.NMF定义中采用的数学模型基于非线性投影结构构造,这决定了NMF降维需借助计算量很大的迭代操作... 非负矩阵分解(Non-negative matrix factorization,NMF)是一个近年来非常流行的非负数据处理方法,它常用于维数约减、特征提取和数据挖掘等.NMF定义中采用的数学模型基于非线性投影结构构造,这决定了NMF降维需借助计算量很大的迭代操作来实现.此外,由此模型提取的NMF特征常不稀疏,这与NMF的设计期望相差甚远.为一并解决上述两个问题,本文提出了一个新的模型—基于线性投影结构的NMF(Linear projection-based NMF,LPBNMF),并构造了一个单调的LPBNMF算法.从数学的角度看,LPBNMF可理解为实现NMF的一种特殊方式.LPBNMF降维通过线性变换来完成,它所采用的数学模型的自身结构特点决定了由其得到的特征一定非常稀疏.大量的比较实验表明,LPBNMF的降维效率显著高于NMF,LPBNMF特征明显比NMF特征更稀疏和局部化.最后,基于AR人脸数据库的实验揭示,LPBNMF特征比NMF、LDA以及PCA等特征更适合于用最近邻分类法处理有遮挡人脸识别问题. 展开更多
关键词 矩阵分解 基于线性投影结构的矩阵分解 特征提取 数据描述 效率 稀疏特征 有遮挡人脸识别
在线阅读 下载PDF
广义判别正交非负矩阵分解及其应用 被引量:4
17
作者 刘昶 周激流 郎方年 《系统工程与电子技术》 EI CSCD 北大核心 2011年第10期2327-2330,共4页
提出了一种广义判别正交非负矩阵分解算法。与传统非负矩阵分解算法不同,该算法对目标函数加入了正交约束,保证了低维特征的非负性;也不同于以往的判别非负矩阵分解算法将判别约束加于低维权重上,该算法将判别约束推广到低维特征中,使... 提出了一种广义判别正交非负矩阵分解算法。与传统非负矩阵分解算法不同,该算法对目标函数加入了正交约束,保证了低维特征的非负性;也不同于以往的判别非负矩阵分解算法将判别约束加于低维权重上,该算法将判别约束推广到低维特征中,使得低维特征参与模式识别,进一步提高了识别精度。本文给出了算法的推导过程,并将其应用于人脸验证和人脸表情识别。实验结果表明,该算法提高了低维特征的判别能力,具有更好的性能。 展开更多
关键词 矩阵分解 判别分析 正交约束 特征 人脸验证 人脸识别
在线阅读 下载PDF
稀疏约束下非负矩阵分解的增量学习算法 被引量:8
18
作者 王万良 蔡竞 《计算机科学》 CSCD 北大核心 2014年第8期241-244,共4页
非负矩阵分解(NMF)是一种有效的子空间降维方法。为了改善非负矩阵分解运算规模随训练样本增多而不断增大的现象,同时提高分解后数据的稀疏性,提出了一种稀疏约束下非负矩阵分解的增量学习算法,该算法在稀疏约束的条件下利用前一次分解... 非负矩阵分解(NMF)是一种有效的子空间降维方法。为了改善非负矩阵分解运算规模随训练样本增多而不断增大的现象,同时提高分解后数据的稀疏性,提出了一种稀疏约束下非负矩阵分解的增量学习算法,该算法在稀疏约束的条件下利用前一次分解的结果参与迭代运算,在节省大量运算时间的同时提高了分解后数据的稀疏性。在ORL和CBCL人脸数据库上的实验表明了该算法降维的有效性。 展开更多
关键词 子空间降 稀疏约束 矩阵分解 增量学习
在线阅读 下载PDF
基于快速层次交替最小二乘非负张量Tucker分解的干涉高光谱图像光谱信息压缩方法 被引量:5
19
作者 杜丽敏 李进 +3 位作者 金光 高慧斌 金龙旭 张柯 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第11期3155-3160,共6页
提出一种基于快速层次交替最小二乘非负张量Tucker分解的高光谱图像光谱信息压缩算法。首先,将干涉高光谱图像光程差方向的三维信息采用三维光程差方向提升小波变换(3DOPT-LDWT)进行分解,将三维小波子带系数看作三阶非负张量,采用快速... 提出一种基于快速层次交替最小二乘非负张量Tucker分解的高光谱图像光谱信息压缩算法。首先,将干涉高光谱图像光程差方向的三维信息采用三维光程差方向提升小波变换(3DOPT-LDWT)进行分解,将三维小波子带系数看作三阶非负张量,采用快速层次交替最小二乘非负张量Tucker分解(FHALS-NTD)算法对进行分解,得到核心张量和模式矩阵。对每个模式矩阵进行量化,对核心张量采用比特平面重要系数编码算法进行编码,得出最终的压缩码流。结果表明,此压缩算法可以稳定可靠地工作。与传统压缩算法比较,平均信噪比提高了1.23dB。有效的提高了干涉高光谱图像压缩性能。 展开更多
关键词 干涉高光谱图像 光差程方向 3光差程方向提升小波 快速层次交替最小张量Tucker分解
在线阅读 下载PDF
基于投影梯度的非负矩阵分解盲信号分离算法 被引量:7
20
作者 李煜 何世钧 《计算机工程》 CAS CSCD 北大核心 2016年第2期104-107,112,共5页
在盲信号分离过程中,基于乘性迭代的非负矩阵分解(NMF)存在运算量大、收敛速度慢等问题。为此,在投影梯度法的基础上提出一种新的NMF盲信号分离算法。通过增加行列式约束、稀疏度约束和相关性约束条件,将最优化问题转化为交替的最小二... 在盲信号分离过程中,基于乘性迭代的非负矩阵分解(NMF)存在运算量大、收敛速度慢等问题。为此,在投影梯度法的基础上提出一种新的NMF盲信号分离算法。通过增加行列式约束、稀疏度约束和相关性约束条件,将最优化问题转化为交替的最小二乘问题,将投影梯度法应用于基于约束的NMF盲信号分离过程。仿真结果表明,该算法能减小重构误差,在维持源分离信号稀疏性的基础上实现混合信号的唯一分解。与经典NMF算法和NMFDSC算法相比,其收敛和分解速度更快,重构信号的信噪比更高。 展开更多
关键词 盲信号分离 矩阵分解 乘性迭代 交替最小乘法 投影梯度
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部