在硬件损伤条件下分析了能量采集双向中继网络的系统中断性能,该网络的终端节点对直达链路信号和中继链路信号分别进行选择合并(Selection Combining,SC)和最大比合并(Maximum Ratio Combining,MRC)。首先,推导了该网络在SC方案下的系...在硬件损伤条件下分析了能量采集双向中继网络的系统中断性能,该网络的终端节点对直达链路信号和中继链路信号分别进行选择合并(Selection Combining,SC)和最大比合并(Maximum Ratio Combining,MRC)。首先,推导了该网络在SC方案下的系统中断概率,并在此基础上得到了由硬件损伤而引起的两种效应,即中继协作效应和系统协作效应。然后,推导了该网络在MRC方案下的系统中断概率。最后,通过仿真分析了硬件损伤及系统参数对系统中断性能的影响,并比较了该网络在SC方案和MRC方案下的系统中断性能。仿真结果表明:在硬件损伤条件下,MRC方案仅引起系统协作效应;相比于MRC方案,SC方案对硬件损伤更加敏感;当数据传输速率低于系统协作门限时,采用MRC能够实现更好的系统中断性能。展开更多
在双向中继协作系统中,随着用户数和中继数量增加,节点间的传输干扰成为影响系统性能的不可忽略因素,如何考虑节点间传输干扰并设计合理的资源分配算法是提升性能的关键。对此设计一种实现简单、复杂度相对较低、可扩展性好的避免干扰...在双向中继协作系统中,随着用户数和中继数量增加,节点间的传输干扰成为影响系统性能的不可忽略因素,如何考虑节点间传输干扰并设计合理的资源分配算法是提升性能的关键。对此设计一种实现简单、复杂度相对较低、可扩展性好的避免干扰资源分配算法RABST(Resource Allocation based on SWIPT and TDMA)。考虑了中继节点能量和信息的分配比例、传输功率等资源的分配,以及多用户的链路资源来提高链路的总传输速率和利用率。将RABST建模成优化问题并求解,优化了系统的资源分配并最大化了系统吞吐量。仿真实验证明了RABST可以有效地增大系统吞吐量。展开更多
文摘在硬件损伤条件下分析了能量采集双向中继网络的系统中断性能,该网络的终端节点对直达链路信号和中继链路信号分别进行选择合并(Selection Combining,SC)和最大比合并(Maximum Ratio Combining,MRC)。首先,推导了该网络在SC方案下的系统中断概率,并在此基础上得到了由硬件损伤而引起的两种效应,即中继协作效应和系统协作效应。然后,推导了该网络在MRC方案下的系统中断概率。最后,通过仿真分析了硬件损伤及系统参数对系统中断性能的影响,并比较了该网络在SC方案和MRC方案下的系统中断性能。仿真结果表明:在硬件损伤条件下,MRC方案仅引起系统协作效应;相比于MRC方案,SC方案对硬件损伤更加敏感;当数据传输速率低于系统协作门限时,采用MRC能够实现更好的系统中断性能。
文摘在双向中继协作系统中,随着用户数和中继数量增加,节点间的传输干扰成为影响系统性能的不可忽略因素,如何考虑节点间传输干扰并设计合理的资源分配算法是提升性能的关键。对此设计一种实现简单、复杂度相对较低、可扩展性好的避免干扰资源分配算法RABST(Resource Allocation based on SWIPT and TDMA)。考虑了中继节点能量和信息的分配比例、传输功率等资源的分配,以及多用户的链路资源来提高链路的总传输速率和利用率。将RABST建模成优化问题并求解,优化了系统的资源分配并最大化了系统吞吐量。仿真实验证明了RABST可以有效地增大系统吞吐量。