期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别
1
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 YOLOv8模型 遮挡目标检测 小目标检测 尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
RO-YOLOv9车辆行人检测算法
2
作者 廖炎华 万学俊 +1 位作者 赵周洲 潘文林 《计算机工程与应用》 北大核心 2025年第11期144-155,共12页
针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and a... 针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and adaptive scale fusion feature pyramid network,BiASF-FPN)结构,优化多尺度特征融合,保证算法有效捕捉从小尺度到大尺度目标的详细信息。提出OR-RepN4模块,通过重参数化策略,复杂算法结构简单化,提高推理速度。引用Shape-NWD(shape neighborhood weighted decomposition)损失函数,专注边界框形状与尺寸,采用归一化高斯Wasserstein距离平滑回归,实现跨尺度不变性,降低小尺度与遮挡目标的检测误差。实验结果表明,在优化后的SODA10M和BDD100K数据集下,RO-YOLOv9算法的mAP@0.5(mean average precision)分别达到68.1%和56.8%,比YLOLOv9算法提高5.6个百分点和4.4个百分点,并且检测帧率分别达到了55.3帧/s和54.2帧/s,达到检测精度和检测速度的平衡。 展开更多
关键词 YOLOv9 小目标检测 双向与自适应尺度融合特征金字塔网络(biasf-fpn) OR-RepN4 Shape-NWD
在线阅读 下载PDF
基于改进YOLOv5s的矿工排队检测方法 被引量:6
3
作者 郝明月 闵冰冰 +3 位作者 张新建 赵作鹏 吴晨 王欣 《工矿自动化》 CSCD 北大核心 2023年第11期160-166,共7页
传统的目标检测算法识别矿工排队异常行为时需人工提取特征,检测时间长、检测精度低;基于卷积神经网络的目标检测算法在检测速度和精度上有所提升,但在遮挡、昏暗和光照不均等场景下的检测效果难以保障。针对上述问题,提出了一种改进YOL... 传统的目标检测算法识别矿工排队异常行为时需人工提取特征,检测时间长、检测精度低;基于卷积神经网络的目标检测算法在检测速度和精度上有所提升,但在遮挡、昏暗和光照不均等场景下的检测效果难以保障。针对上述问题,提出了一种改进YOLOv5s(HPI-YOLOv5s)模型,并将其用于矿工排队检测。HPIYOLOv5s模型在YOLOv5s模型的基础上对路径聚合网络(PANet)进行改进,通过删除单个输入边节点、增加双向交叉路径,构建了一种双向交叉特征金字塔网络(BCrFPN)进行多尺度特征融合。鉴于手动设置阈值的标签分配策略鲁棒性不高,在自适应训练样本选择(ATSS)动态设置阈值的基础上,提出动态标签分配策略(ATSS_PLUS),更合理地评估候选样本的质量,动态设定每个真实目标的阈值,具有更高的检测精度和鲁棒性。通过半平面交法计算人脸框与所划定排队区域的相交面积,并将相交面积和人脸框面积之比与设置的阈值比较以判断矿工是否有序排队。实验结果表明:HPI-YOLOv5s模型比YOLOv5s模型的准确率提高了1.9%,权重大小减少了32%,参数量减少了6.9%,检测速度提高了7.8%,且针对遮挡、昏暗、光照不均的矿井图像,能够更准确地识别矿工排队情况。 展开更多
关键词 矿工排队检测 人脸检测 双向交叉特征金字塔网络 特征融合 自适应训练样本选择 动态标签分配
在线阅读 下载PDF
基于改进YOLOX-s的机场跑道冰雪状态感知 被引量:2
4
作者 邢志伟 阚犇 +2 位作者 刘子硕 李彪 罗谦 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第10期1292-1304,共13页
针对机场冰雪跑道安全性和适航性状态感知能力不足及跑道表面状况报告交互的新需求,提出一种面向多尺度特征融合的机场跑道冰雪状态感知模型.以YOLOX-s模型为基础,在主干特征提取网络中引入全局上下文模块,获取更丰富的浅层与深层特征;... 针对机场冰雪跑道安全性和适航性状态感知能力不足及跑道表面状况报告交互的新需求,提出一种面向多尺度特征融合的机场跑道冰雪状态感知模型.以YOLOX-s模型为基础,在主干特征提取网络中引入全局上下文模块,获取更丰富的浅层与深层特征;将颈部结构中路径聚合网络替换为双向特征金字塔,以提升特征融合能力;在加强特征提取网络尾部添加自适应空间特征融合结构,进一步增强特征融合效果;使用α-EIoU优化损失函数,提高模型收敛速度与精度.实验结果表明,改进后的YOLOX-s模型在跑道冰雪实验系统所得的冰雪污染物数据集上平均精度达到了91.53%,比原始的YOLOX-s模型提高了4.68%,能够为机场跑道除冰雪作业提供决策支持. 展开更多
关键词 跑道冰雪状态感知 YOLOX-s 全局上下文模块 双向特征金字塔网络 自适应空间特征融合结构 α-EIoU损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部