期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
TSPT:基于预训练的三阶段复合式文本摘要模型 被引量:3
1
作者 吕瑞 王涛 +1 位作者 曾碧卿 刘相湖 《计算机应用研究》 CSCD 北大核心 2020年第10期2917-2921,共5页
抽取式方法从源文本中抽取句子,会造成信息冗余;生成式方法可能生成非源文词,会产生语法问题,自然性差。BERT作为一种双向Transformer模型,在自然语言理解任务上展现了优异的性能,但在文本生成任务的应用有待探索。针对以上问题,提出一... 抽取式方法从源文本中抽取句子,会造成信息冗余;生成式方法可能生成非源文词,会产生语法问题,自然性差。BERT作为一种双向Transformer模型,在自然语言理解任务上展现了优异的性能,但在文本生成任务的应用有待探索。针对以上问题,提出一种基于预训练的三阶段复合式文本摘要模型(TSPT),结合抽取式方法和生成式方法,将源本文经过预训练产生的双向上下文信息词向量由sigmoid函数获取句子得分抽取关键句,在摘要生成阶段将关键句作为完形填空任务重写,生成最终摘要。实验结果表明,该模型在CNN/Daily Mail数据集中取得了良好效果。 展开更多
关键词 预训练 复合式文本摘要模型 抽取式方法 生成式方法 双向上下文信息词向量
在线阅读 下载PDF
基于MCA-BERT的数学文本分类方法 被引量:2
2
作者 杨先凤 龚睿 李自强 《计算机工程与设计》 北大核心 2023年第8期2312-2319,共8页
为尽可能地提高数学文本分类的效果,通过构建数学文本数据集并对该数据集进行分析,提出增强文本实体信息的多通道注意力机制-Transformers的双向编码器表示(MCA-BERT)模型。通过Word2vec词向量的平均池化获得句子级的实体信息,通过注意... 为尽可能地提高数学文本分类的效果,通过构建数学文本数据集并对该数据集进行分析,提出增强文本实体信息的多通道注意力机制-Transformers的双向编码器表示(MCA-BERT)模型。通过Word2vec词向量的平均池化获得句子级的实体信息,通过注意力机制给不同词赋予不同权重,获得词语级的实体信息,将两类实体信息与BERT输出的上下文信息拼接,通过Softmax层得到分类结果。该方法在数学文本数据集上的F1值相比BERT单通道的方法提高了2.1个百分点。实验结果说明,该方法能够有效增强文本实体信息,获得更好的分类效果。 展开更多
关键词 数学文本分类 实体信息 注意力机制 多通道 双向编码器表示 向量 分类器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部