期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
基于双分支边缘卷积融合网络的红外与可见光图像融合方法 被引量:1
1
作者 张鸿德 冯鑫 +1 位作者 杨杰铭 邱国航 《光子学报》 EI CAS CSCD 北大核心 2024年第8期287-298,共12页
提出一种基于双分支边缘卷积融合网络的红外与可见光图像融合方法。首先,提出一种改进的双分支边缘卷积结构,将图像包含的信息分解为公共信息和模态信息,并于每个分支引入边缘卷积块,更好的提取深度特征;然后在融合层引入卷积注意力模... 提出一种基于双分支边缘卷积融合网络的红外与可见光图像融合方法。首先,提出一种改进的双分支边缘卷积结构,将图像包含的信息分解为公共信息和模态信息,并于每个分支引入边缘卷积块,更好的提取深度特征;然后在融合层引入卷积注意力模块对模态特征进行增强;最后基于所本文编解码网络特点,提出一种重建损失结合融合损失的损失函数。经过大量的消融性实验和对比实验表明,本文方法能够很好的保留原图像中的公共信息和模态信息,并且相比目前最新的融合方法在主观和客观评价上都具有优秀的综合性能。 展开更多
关键词 红外与可见光图像融合 双分支边缘卷积融合网络 深度学习 边缘卷积 卷积注意力
在线阅读 下载PDF
边缘引导的双分支网络SAR图像相干斑抑制方法
2
作者 朱磊 姚同钰 +3 位作者 车晨洁 姚丽娜 张博 潘杨 《北京航空航天大学学报》 北大核心 2025年第6期1852-1862,共11页
为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边... 为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边缘信息提取模块,增强模型的边缘感知能力;利用基于通道注意力的残差抑斑子网络(CARNet)、基于混合注意力的增强抑斑子网络(MAENet)及基于多分支并行的多尺度特征融合模块(MPMFFB)共同形成双分支抑斑网络,实现在相干斑抑制的同时更好地保护边缘细节。实验结果表明:与SAR-Transformer、HTNet等先进方法相比,所提方法具有更好的相干斑抑制与边缘保持性能;对仿真SAR图像,峰值信噪比、结构相似性、边缘保持指数分别平均提升0.96 dB、2.60%、0.60%;对真实SAR图像,等效视数提升14.12%以上,边缘保持指数平均提升4.52%。 展开更多
关键词 图像去噪 合成孔径雷达图像 相干斑抑制 分支网络 多尺度特征融合
在线阅读 下载PDF
共享超分的双分支遥感图像时空融合网络
3
作者 方帅 张小溪 张晶 《电子学报》 北大核心 2025年第2期581-594,共14页
本文从空间维度和时间维度分析了场景弱变化区域和类型变化区域的融合规律、物理模型的差异性和效果上的互补性,提出了共享超分辨率的双分支(Shared Super-Resolution Dual-Branch,SSRDB)遥感图像时空融合算法.该算法具有如下3个特点:(1... 本文从空间维度和时间维度分析了场景弱变化区域和类型变化区域的融合规律、物理模型的差异性和效果上的互补性,提出了共享超分辨率的双分支(Shared Super-Resolution Dual-Branch,SSRDB)遥感图像时空融合算法.该算法具有如下3个特点:(1)构建了互补性的网络框架,虽然该框架是端到端的深度学习模型,但每个模块有各自的物理意义和任务,通过增加中间监督,分别实现空间维的超分建模,时间维的变化预测建模,以及两者优势互补的融合建模;(2)对变化预测的数学表示进行推演,利用一个非线性补偿模块,使得两分支共享超分模块,在共享超分模块和递归复用超分单元的双重策略下,显著降低了网络参数;(3)递归超分模块使用固定的2倍率超分单元,在有效监督和有效参考下,渐进式进行特征增强与图像重建,这可以有效提高超分精度,且通过调整超分单元个数,灵活适应不同倍率差异的时空融合任务.SSRDB算法在空间和光谱特性上以及变化区域上都展现了优秀的融合效果,RMSE(Root Mean Squared Error)、SAM(Spectral Angle Mapper)和SSIM(Structural Similarity)3个定量评价指标显示,在CIA(Coleambally lrrigation Area)数据集上分别优于次优方法 7.067%、2.065%、0.563%;在LGC(Lower Gwydir Catchment)数据集上分别优于次优方法5.319%、5.490%、1.455%;在Nanjing数据集上分别优于次优方法6.486%、16.290%、0.481%. 展开更多
关键词 遥感图像 时空融合 分支 图像超分 卷积神经网络
在线阅读 下载PDF
基于双分支卷积神经网络的气水动态分析
4
作者 李道伦 吕茂春 +1 位作者 查文舒 沈路航 《合肥工业大学学报(自然科学版)》 北大核心 2025年第6期828-832,838,共6页
传统气水分析方法主要有数值分析方法、实验模拟法等,但数值分析方法需要大量难以测量的数据,实验模拟法难以表征复杂油气开发现场,为此,文章基于深度学习神经网络提出一种新的气水分析方法。该方法根据气水动态物理模型建立的双分支卷... 传统气水分析方法主要有数值分析方法、实验模拟法等,但数值分析方法需要大量难以测量的数据,实验模拟法难以表征复杂油气开发现场,为此,文章基于深度学习神经网络提出一种新的气水分析方法。该方法根据气水动态物理模型建立的双分支卷积神经网络分别对排水井和产气井进行建模,个性化表征生产井和排水井的动静态数据;将产气井的气水产量数据作为输出,实现井组动态耦合关联,建立井组气水动态分析的深度学习网络模型。主动排水井组动态生产数据分析表明,该双分支卷积神经网络可实现3口生产井的日产气量和日产水量的高质量预测,揭示了主动排水井组中的复杂关联,可进行气水关系动态分析,从而为油气藏工程师提供了一种方便快捷的分析方法。 展开更多
关键词 气水动态分析 主动排水井组 分支卷积神经网络 日产气 日产水
在线阅读 下载PDF
基于优选多源遥感特征和双分支卷积神经网络的茶园提取方法 被引量:1
5
作者 林欣怡 汪小钦 +6 位作者 李蒙蒙 金时来 龙江 冯晓敏 吴瑞姣 林敬兰 李琳 《农业机械学报》 北大核心 2025年第6期446-456,共11页
准确的茶园分布信息可以为土地利用规划、种植布局优化提供科学的决策支撑,有助于推动茶产业可持续发展。本文基于GF-2 PMS影像的RGB波段,Sentinel-2光学影像计算的NDVI,Sentinel-1时序SAR数据构建的物候特征(包括茶树生长幅度(Growth a... 准确的茶园分布信息可以为土地利用规划、种植布局优化提供科学的决策支撑,有助于推动茶产业可持续发展。本文基于GF-2 PMS影像的RGB波段,Sentinel-2光学影像计算的NDVI,Sentinel-1时序SAR数据构建的物候特征(包括茶树生长幅度(Growth amplitude,GA)和生长期长度(Growth length,GL)),以及GF-7立体像对影像计算的坡向、坡度、曲率,构建了茶园多模态遥感特征,并通过随机森林特征优选出最佳组合。利用双分支网络联合学习策略,以AMLNet(Attentional multiscale lightweight encoder-decoder network)为第1分支,Vanilla AMLNet为第2分支,构建耦合多模态信息的双分支网络模型MIPBNet(Multi-modal information parallel branch network);利用特征融合模块(Dual-branch feature fusion block,DBFF)在解码器末端进行特征级融合;利用复合损失函数进行优化训练。研究结果表明:NDVI+GA+坡向+坡度组合最能提高茶园分类精度。基于RGB数据依次加入NDVI、GA、坡向、坡度的组合方案,实验结果表明,融合多模态特征后,茶园提取结果漏提和误提现象明显减少,总体精度提升3.11个百分点。与典型的语义分割模型UNet、UNeXt、Segformer相比,MIPBNet的单分支AMLNet获得了更优的茶园提取结果。 展开更多
关键词 茶园提取 多源遥感 深度学习 语义分割 多模态 分支卷积神经网络
在线阅读 下载PDF
融合局部-全局特征的双分支遥感影像建筑物提取网络
6
作者 刘二虎 李浩文 +3 位作者 胡煜 徐胜军 李小晗 史亚 《计算机科学与探索》 北大核心 2025年第9期2430-2444,共15页
从遥感影像中高效且自动地提取建筑物信息是遥感智能化解译的一项重要工作,然而高分辨率遥感影像中的建筑物大小不一、形状多变,背景干扰严重,导致现有算法的提取效果不佳。针对此问题,提出了一种融合局部-全局特征的双分支网络,用于遥... 从遥感影像中高效且自动地提取建筑物信息是遥感智能化解译的一项重要工作,然而高分辨率遥感影像中的建筑物大小不一、形状多变,背景干扰严重,导致现有算法的提取效果不佳。针对此问题,提出了一种融合局部-全局特征的双分支网络,用于遥感影像中建筑物的准确高效提取。设计了一种CNN与Transformer双分支结构的编码器以同时捕获建筑物的局部纹理信息和全局上下文依赖关系;为了克服CNN分支与Transformer分支所提取特征的差异性,设计了跨特征注意力融合模块(CFAFM)来有效地聚合两个分支所提取到的两组不同特征,对其进行重要性加权;为了增强解码器的细粒度特征恢复能力,设计了特征细化增强模块(FREM),插入至解码器的末端以减少上采样过程中的信息丢失,细化建筑物的边缘和局部细节。在WHU、Massachusetts及Inria建筑物数据集中,所提网络的IoU分别达到90.84%、74.94%、81.24%,F1-score分别达到95.20%、85.53%、89.69%。实验结果表明,所提网络可以有效提高遥感影像建筑物的提取精度,且在复杂任务场景下与现有方法相比具有明显的优势。 展开更多
关键词 遥感影像 建筑物提取 分支网络 特征融合 特征细化增强
在线阅读 下载PDF
结合卷积增强窗口注意力的双分支语音增强神经网络
7
作者 张晨辉 原之安 钱宇华 《计算机研究与发展》 北大核心 2025年第4期852-862,共11页
在复杂环境以及突发背景噪音条件下,语音增强任务具有极大的困难和挑战.主要原因是现有的语音增强方法未能有效捕获语谱图特征,尤其是局部信息.在过去的研究中,Transformer模型更专注于音频的全局信息,而忽略了局部信息的重要性.在音频... 在复杂环境以及突发背景噪音条件下,语音增强任务具有极大的困难和挑战.主要原因是现有的语音增强方法未能有效捕获语谱图特征,尤其是局部信息.在过去的研究中,Transformer模型更专注于音频的全局信息,而忽略了局部信息的重要性.在音频经过短时傅里叶变换(STFT)处理后,多数模型仅使用幅值信息,而忽略了相位信息,导致它们未能有效捕获语谱图特征,从而影响了语音增强的效果.基于此设计出一个带有卷积增强窗口注意力的双分支语音增强神经网络.该模型采用U-NET架构,通过双分支结构对音频的幅值和相位信息同时建模;在2个分支之间引入复值计算模块以实现信息交互;在编码器层和解码器层之间的跳跃连接部分采用卷积增强窗口注意力模块,该模块执行基于非重叠窗口的自注意力操作,在捕获局部上下文信息的同时显著降低了语音增强模型的计算复杂度.该模型在公开的Voicebank-Demand数据集上进行测试,与基线模型DCUNET 16和DCUNET20相比,在客观语音质量评估指标PESQ(perceptual evaluation of speech quality)分别提高了0.51和0.47.除了PESQ指标外,其他指标也都有显著的提升.相较于现有的各类语音增强模型,该模型在各项指标上均处于领先水平,尤其是在PESQ得分方面的提升更为显著. 展开更多
关键词 语音增强 分支网络 语谱图特征 卷积增强窗口注意力 全局信息 局部信息
在线阅读 下载PDF
一种双分支网络结构的典型电气设备多源图像融合算法
8
作者 聂启新 肖志云 +3 位作者 鲍腾飞 靳旭 高文强 郭浩 《电测与仪表》 北大核心 2025年第5期68-75,共8页
随着智能电网系统的快速发展,为提升热故障的准确定位,图像融合技术得到了广泛的关注。文中以变电站电气设备可见光和红外图像为研究对象,通过深度学习方法设计网络模型,以自动编码器为主干网络,其中编码器采用设计的密集连接分支和加... 随着智能电网系统的快速发展,为提升热故障的准确定位,图像融合技术得到了广泛的关注。文中以变电站电气设备可见光和红外图像为研究对象,通过深度学习方法设计网络模型,以自动编码器为主干网络,其中编码器采用设计的密集连接分支和加强分支双分支网络结构,一个分支为密集连接分支,使用密集块连接和自注意力机制来提取边缘和细节特征,另一个分支为加强分支,采用改进的特征金字塔结构(feature pyramid network,FPN),增强全局信息。文中通过双分支结构得到两组相应特征,采用L1-范数融合策略将特征进行融合后输入解码器重建融合图像。经过与多种方法对比,文中方法从主观视觉评价、客观图像融合评价指标两方面验证了该算法的先进性,其中客观评价指标Q MI、SSIM、FMI pixel分别为0.56726、0.59347、0.88760,达到最高值,证明融合图像质量得到提升,适用于电气设备多源图像融合。 展开更多
关键词 图像融合技术 分支网络 电气设备可见光图像和红外图像 图像配准 深度学习
在线阅读 下载PDF
基于小波分解与动态密集空洞卷积的双分支神经网络水印算法
9
作者 李敬有 席晓天 +1 位作者 魏荣乐 张光妲 《信息网络安全》 北大核心 2025年第5期828-839,共12页
基于深度学习的数字水印算法主要倾向于向载体图像的中高频区域嵌入水印信息,只使用卷积神经网络将水印信息映射到载体图像的特征空间中,忽略了频域算法的作用。文章提出一种基于小波分解与动态密集空洞卷积的双分支神经网络水印算法,... 基于深度学习的数字水印算法主要倾向于向载体图像的中高频区域嵌入水印信息,只使用卷积神经网络将水印信息映射到载体图像的特征空间中,忽略了频域算法的作用。文章提出一种基于小波分解与动态密集空洞卷积的双分支神经网络水印算法,通过使用小波分解,更好地引导水印信息的嵌入和提取。该算法运用离散小波变换处理载体图像与水印图像,将其分解为高频信息和低频信息,再使用神经网络进行针对性学习,使用动态密集空洞卷积在减少神经网络层数的情况下,扩大感受野,增强捕捉全局信息的能力,也能避免使用过多的池化层影响重建图像的质量。实验表明,该算法拥有良好的不可见性和鲁棒性。 展开更多
关键词 分支神经网络 离散小波变换 空洞卷积 数字水印
在线阅读 下载PDF
基于PSA引导双分支神经网络特征融合的同步电机故障诊断 被引量:1
10
作者 李俊卿 苑浩 +3 位作者 黄涛 张承志 何玉灵 张波 《智慧电力》 北大核心 2024年第12期51-58,共8页
针对单一传感器信号在同步电机故障诊断中精度不高的问题,提出了1种基于金字塔切分注意力机制(PSA)的神经网络模型。首先,将三相电流信号和振动信号作为双分支输入到卷积神经网络进行特征提取,之后通过特征融合层将提取的信号特征进行... 针对单一传感器信号在同步电机故障诊断中精度不高的问题,提出了1种基于金字塔切分注意力机制(PSA)的神经网络模型。首先,将三相电流信号和振动信号作为双分支输入到卷积神经网络进行特征提取,之后通过特征融合层将提取的信号特征进行融合。其次,添加PSA注意力机制捕获不同尺度的空间信息来丰富特征空间。最后,通过输出层输出诊断结果。实验表明所提模型能够显著提升同步电机故障诊断的准确率。 展开更多
关键词 同步电机 PSA注意力机制 分支特征融合 故障诊断 神经网络
在线阅读 下载PDF
Autoformer双分支网络下的多元空气质量长时预测研究
11
作者 刘杰 张译丹 +1 位作者 田明 韩轲 《安全与环境学报》 北大核心 2025年第1期310-321,共12页
空气质量数据复杂多变,现有方法难以捕捉长期依赖关系,且对季节趋势和多变量建模不足。针对以上问题,研究基于Autoformer模型进行改进,创新性地融入了特征渐进挖掘和多维深度联系两个分支。首先,特征渐进挖掘分支通过序列分解模块将空... 空气质量数据复杂多变,现有方法难以捕捉长期依赖关系,且对季节趋势和多变量建模不足。针对以上问题,研究基于Autoformer模型进行改进,创新性地融入了特征渐进挖掘和多维深度联系两个分支。首先,特征渐进挖掘分支通过序列分解模块将空气质量数据分解为季节分量和趋势分量,对季节分量设计了一种特征增强模块(Feature Enhancement,FE)以捕获关键特征。其次,对趋势分量设计了门控-膨胀因果卷积模块(Gated Linear Unit Dilated Causal Convolution,GLU-DCC)来获取高级时序特征。最后,构建了多维深度联系分支,该分支通过引入维度-分段嵌入模块(Dimension-Segment-Wise Embedding,DSW)和两阶段注意力机制(Two Stage Attention,TSA)提取了多元空气质量数据中的跨维度相关性。研究对两个站点进行空气质量指数(Air Quality Index,AQI)预测,试验结果显示:与基线模型相比,研究模型的两个数据集的均方误差(M_(SE))分别平均下降了47.6%和57.5%,平均绝对误差(M_(AE))分别平均下降了15.5%和38.5%,具有更优的预测性能。 展开更多
关键词 环境工程学 空气质量预测 分支融合网络 特征挖掘 跨维度相关性
在线阅读 下载PDF
基于特征融合的双分支恶意代码同源性分析模型
12
作者 刘凤春 张志枫 +2 位作者 薛涛 杨光辉 魏群 《信息安全研究》 北大核心 2025年第7期594-602,共9页
在恶意代码同源性分析中,由于加密、混淆和加壳等技术产生大量恶意代码变种,导致深度学习模型对恶意代码特征提取能力不足的问题.为此,提出一种多分支卷积和Transformer构建的双分支恶意代码同源性分析模型MCAT-Net(multi-branch convol... 在恶意代码同源性分析中,由于加密、混淆和加壳等技术产生大量恶意代码变种,导致深度学习模型对恶意代码特征提取能力不足的问题.为此,提出一种多分支卷积和Transformer构建的双分支恶意代码同源性分析模型MCAT-Net(multi-branch convolution and Transformer-Net).首先,构建MCAT-Net双分支网络,一个分支是多分支卷积MBC(multi-branch convolution)模块,以MBC模块构建CNN分支,同时引入混合注意力机制,使网络在兼顾局部特征的同时更能关注核心特征;另一个分支是以Vi T为主干的Transformer模块,提取恶意代码图像的全局特征信息并提出下采样模块,在精细地保留全局特征的同时使Transformer与CNN的特征图在空间尺度对齐;其次,以级联的策略融合CNN分支的局部特征和Transformer分支的全局特征,解决网络只关注单一特征问题;最后,使用Softmax分类器对恶意代码家族进行同源性分析.实验结果表明,基于特征融合的双分支模型的分类准确率达到99.24%,相比单支CNN和单支Transformer模型,准确率分别提高0.11%和0.65%. 展开更多
关键词 分支 特征融合 分支卷积 注意力机制 下采样
在线阅读 下载PDF
基于图像融合和双通道卷积神经网络的配电网故障选线方法研究 被引量:5
13
作者 苏斌 侯思祖 郭威 《电子测量与仪器学报》 CSCD 北大核心 2024年第9期54-66,共13页
针对传统的配电网故障选线方法受限于单一的故障诊断模型,提出一种基于图像融合和双通道卷积神经网络的配电网故障选线方法。研究目的是解决现有方法在面对高阻接地、噪声干扰、分布式电源接地、采样时间不同步等复杂工况时的准确性问... 针对传统的配电网故障选线方法受限于单一的故障诊断模型,提出一种基于图像融合和双通道卷积神经网络的配电网故障选线方法。研究目的是解决现有方法在面对高阻接地、噪声干扰、分布式电源接地、采样时间不同步等复杂工况时的准确性问题。首先,利用格拉姆角和场和格拉姆角差场将零序电流信号转成易于区分故障的二维图像,为图像处理提供了基础。其次,通过图像融合技术将GASF图像和GADF图像进行空间域图像融合,得到一张综合特征图像,充分利用了不同图像的特征,提高了特征表达的丰富性和有效性。接着,构建双通道卷积神经网络模型,其中一维卷积神经网络和ResNet50网络分别用于挖掘零序电流信号和格拉姆角场图像的特征。这种设计充分发挥了不同卷积神经网络在处理一维信号和二维图像时的优势。最后,将融合后的特征输入到Sigmoid函数实现故障线路的筛选。实验结果表明,该方法在各种复杂工况下的表现均优于传统方法,其准确率、Kappa系数、马修斯相关系数、召回率分别达到了99.97%、0.9993、0.9993、0.9995。这些结果表明,该方法不仅具有较高的准确性,还具有良好的鲁棒性和稳定性,能够有效应对高阻接地、噪声干扰、分布式电源接地和采样时间不同步等实际应用中的挑战。提出的方法为配电网故障选线提供了一种新颖且高效的解决方案,具有重要的实际应用价值和广泛的推广前景。 展开更多
关键词 格拉姆角场 故障选线 图像融合 通道卷积神经网络
在线阅读 下载PDF
基于双分支卷积网络的玉米叶片叶绿素含量高光谱和多光谱协同反演 被引量:2
14
作者 王亚洲 肖志云 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期196-202,378,共8页
针对智慧农业中叶绿素的精准预测问题,本文提出了基于双分支网络的玉米叶片叶绿素含量高光谱与多光谱协同反演的方法。使用欠完备自编码器进行数据降维,捕捉数据中最为显著的特征,使降维后的数据可以代替原始数据进行训练,从而加快训练... 针对智慧农业中叶绿素的精准预测问题,本文提出了基于双分支网络的玉米叶片叶绿素含量高光谱与多光谱协同反演的方法。使用欠完备自编码器进行数据降维,捕捉数据中最为显著的特征,使降维后的数据可以代替原始数据进行训练,从而加快训练效率,使用双分支卷积网络将多光谱数据用于填充高光谱数据信息,充分利用高光谱数据的空间细节信息,再结合1DCNN建立玉米叶片叶绿素含量预测模型。结果表明,与传统降维算法相比较,欠完备自编码器处理后预测结果最佳,决定系数R2为0.988,均方根误差(RMSE)为0.273,表明使用欠完备自编码器进行降维可以有效提高数据反演精度;与单一的高光谱数据反演模型和多光谱数据反演模型相比,双分支卷积网络预测模型均取得较优的预测结果,R2在0.932以上,RMSE均在1.765以下,表明基于双分支卷积网络的高光谱与多光谱图像协同反演模型可以有效地利用数据的特征;对于其他数据结合本文提及的双分支卷积网络模型进行反演,其R2均在0.905以上,RMSE均在2.149以下,表明该预测模型具有一定的普适性。 展开更多
关键词 玉米叶片 叶绿素含量 高光谱 分支卷积网络 自编码器 协同反演
在线阅读 下载PDF
基于ECA和三分支卷积融合网络的脑电信号解码研究 被引量:1
15
作者 周凯 艾尔肯·亥木都拉 《现代电子技术》 北大核心 2024年第23期89-97,共9页
基于运动想象脑电信号的脑机接口系统可以实现大脑和外部设备的交互,能够帮助残疾人控制辅助设备,提高他们的生活质量。然而,有限的脑电信号解码性能限制了脑机接口产业的大规模发展。文中提出一种基于高效通道注意力(ECA)和三分支卷积... 基于运动想象脑电信号的脑机接口系统可以实现大脑和外部设备的交互,能够帮助残疾人控制辅助设备,提高他们的生活质量。然而,有限的脑电信号解码性能限制了脑机接口产业的大规模发展。文中提出一种基于高效通道注意力(ECA)和三分支卷积融合网络的ECA-TBCFNet模型用于基于脑电图的运动想象(MI-EEG)信号解码。ECA模块可自动捕捉脑电信号中的跨通道交互,三分支卷积融合网络能够多尺度地提取信号中的时空特征。ECA-TBCFNet模型在BCI竞赛IV-2a数据集上的四分类任务中取得了83.3%的准确率和0.78的kappa系数;此外,在Physionet MI-EEG数据集上两分类和四分类任务中,ECA-TBCFNet模型的准确率分别为87.87%和69.01%。结果表明,提出的ECA-TBCFNet模型可以有效提高运动想象脑电信号的识别准确率,并具有较高的鲁棒性。 展开更多
关键词 脑机接口 脑电图 运动想象 高效通道注意力 分支卷积神经网络 特征融合
在线阅读 下载PDF
基于散射点拓扑和双分支卷积神经网络的SAR图像小样本舰船分类 被引量:3
16
作者 张翼鹏 卢东东 +1 位作者 仇晓兰 李飞 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第2期411-427,共17页
随着合成孔径雷达(SAR)图像在舰船检测和识别领域的广泛应用,准确而高效地进行舰船分类已经成为一个亟待解决的问题。在小样本学习场景下,一般的方法面临着泛化能力不足的问题,因此该文引入了额外的信息和特征,旨在增加模型对目标的理... 随着合成孔径雷达(SAR)图像在舰船检测和识别领域的广泛应用,准确而高效地进行舰船分类已经成为一个亟待解决的问题。在小样本学习场景下,一般的方法面临着泛化能力不足的问题,因此该文引入了额外的信息和特征,旨在增加模型对目标的理解和泛化能力。该文通过散射关键点构建拓扑结构以表征舰船目标的结构和形状特征,并计算拓扑结构的拉普拉斯矩阵,将散射点之间的拓扑关系转化为矩阵形式,最后将SAR图像和拉普拉斯矩阵分别作为双分支网络的输入进行特征提取。在网络结构方面,该文设计了一个由两个独立的卷积分支组成的双分支卷积神经网络,分别负责处理视觉特征和拓扑特征,并用两个交叉融合注意力模块分别对两个分支的特征进行交互融合。该方法有效地将目标散射点拓扑关系与网络的自动学习过程相结合,从而增强模型的泛化能力并提高分类精度。实验结果表明,在OpenSARShip数据集上,所提方法在1-shot和5-shot任务的平均准确率分别为53.80%和73.00%。而在FUSAR-Ship数据集上,所提方法分别取得了54.44%和71.36%的平均准确率。所提方法在1-shot和5-shot的设置下相比基础方法准确率均提升超过15%,证明了散射点拓扑的应用对SAR图像小样本舰船分类的有效性。 展开更多
关键词 合成孔径雷达(SAR) 舰船分类 小样本学习 散射点拓扑 分支卷积神经网络
在线阅读 下载PDF
基于双分支卷积神经网络的弱光图像显著性目标识别研究 被引量:1
17
作者 陈虹云 徐欢潇 +1 位作者 李秀静 梅香香 《激光杂志》 CAS 北大核心 2024年第10期136-140,共5页
图像的亮度和对比度通常较低,使得目标信息变得模糊不清,增加识别的难度。针对传统识别方法面对多个显著性目标识别不准确的问题,提出基于双分支卷积神经网络的弱光图像显著性目标识别方法。针对弱光图像实施图像灰度化处理和去噪处理... 图像的亮度和对比度通常较低,使得目标信息变得模糊不清,增加识别的难度。针对传统识别方法面对多个显著性目标识别不准确的问题,提出基于双分支卷积神经网络的弱光图像显著性目标识别方法。针对弱光图像实施图像灰度化处理和去噪处理。增强弱光图像,调节弱光问题,利用双分支卷积神经网络,提取弱光图像显著性目标特征。实验结果表明:所研究方法应用下,无论图像中存在几个显著性目标,Kappa值均在0.8以上,准确性较高。 展开更多
关键词 分支卷积神经网络 弱光图像 显著性目标 识别方法
在线阅读 下载PDF
拉普拉斯卷积的双路径特征融合遥感图像智能解译方法 被引量:3
18
作者 曾军英 顾亚谨 +5 位作者 曹路 秦传波 邓森耀 翟懿奎 甘俊英 谢梓源 《现代电子技术》 北大核心 2024年第17期65-72,共8页
由于遥感图像存在多尺度变化和目标边缘模糊等问题,对其进行智能解译仍然是一项极具挑战性的工作。传统的语义分割方法在处理这些问题时存在局限性,难以有效捕捉全局和局部信息。针对上述问题,文中提出一种双路径特征融合分割方法 DFNe... 由于遥感图像存在多尺度变化和目标边缘模糊等问题,对其进行智能解译仍然是一项极具挑战性的工作。传统的语义分割方法在处理这些问题时存在局限性,难以有效捕捉全局和局部信息。针对上述问题,文中提出一种双路径特征融合分割方法 DFNet。首先,使用Swin Transformer作为主干提取全局语义特征,以处理像素之间的长距离依赖关系,从而促进对图像中不同区域相关性的理解;其次,将拉普拉斯卷积嵌入到空间分支,以捕获局部细节信息,加强目标地物边缘信息表达;最后,引入多尺度双向特征融合模块,充分利用图像中的全局和局部信息,以增强多尺度信息的获取能力。在实验中,使用了三个公开的高分辨率遥感图像数据集进行验证,并通过消融实验验证了所提模型不同模块的作用。实验结果表明,所提方法在Uavid数据集、Potsdam数据集、LoveDA数据集的mIoU达到了71.32%、85.58%、54.01%,提高了语义分割的性能,使分割结果更为精细。 展开更多
关键词 语义分割 遥感图像 多尺度信息 拉普拉斯卷积 边缘信息 路径 特征融合 智能解译
在线阅读 下载PDF
基于双分支网络的表面肌电信号识别方法 被引量:1
19
作者 王万良 潘杰 +1 位作者 王铮 潘家宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第11期2208-2218,2229,共12页
针对目前表面肌电信号(sEMG)手势识别细节信息提取不充分,对相似手势区分困难的问题,提出基于加强二维化特征的双分支网络(ETDTBN)模型.该模型通过加强二维化方法生成二维特征图,使用多层卷积神经网络(ML-CNN)提取sEMG的空间特征,利用... 针对目前表面肌电信号(sEMG)手势识别细节信息提取不充分,对相似手势区分困难的问题,提出基于加强二维化特征的双分支网络(ETDTBN)模型.该模型通过加强二维化方法生成二维特征图,使用多层卷积神经网络(ML-CNN)提取sEMG的空间特征,利用双向门控循环单元(Bi-GRU)提取原始信号的时序特征.考虑到不同的特征对网络的影响程度不同,引入自适应特征融合机制对不同分支进行融合,强化有用特征并弱化无用特征,提高表面肌电识别的准确率.实验在电极偏移和不同受试者2种情况下对ETDTBN进行训练与测试,与主流的肌电手势识别模型进行对比.可知,ETDTBN的总体识别准确率分别为86.95%和84.15%,准确率均为最优,证明了该模型的有效性. 展开更多
关键词 表面肌电信号(sEMG) 手势识别 加强二维化特征 分支网络 自适应特征融合机制
在线阅读 下载PDF
复杂稠密网络下的并置多尺度融合边缘检测模型 被引量:2
20
作者 党建武 张天胤 田彬 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第8期13-22,共10页
边缘检测是计算机视觉任务的基础.目前的技术主要依赖于深度学习,但是大多数的模型在评价阶段会借助非极大值抑制来提高预测边缘的准确率.该策略仅着重关注预测边缘的准确性,没有同时考虑边缘的粗细程度.针对这一问题,本文基于复杂稠密... 边缘检测是计算机视觉任务的基础.目前的技术主要依赖于深度学习,但是大多数的模型在评价阶段会借助非极大值抑制来提高预测边缘的准确率.该策略仅着重关注预测边缘的准确性,没有同时考虑边缘的粗细程度.针对这一问题,本文基于复杂稠密网络,提出了一种新的特征融合策略.该策略在传统深度学习边缘检测器侧输出的基础上,添加了自顶向下的并置多尺度融合架构.此架构可以更好地将高层的高语义特征与低层的高分辨率纹理特征结合,有效地抑制了边缘预测中存在的背景模糊和伪线条的现象.在特征连接处使用Concat block块代替单一的Concat操作,更好地融合了不同尺度的语义信息.最后使用一个简单的注意力融合块融合多个网络输出,并结合跟踪损失对输出的不同尺度的预测图进行深度监督.此方法不依赖于非极大值抑制,并且充分利用了目标的多尺度、多层次信息,在精细边缘图像的同时也提升了预测的准确性.实验结果显示,在未使用和使用形态学非极大值抑制方案的情况下,所提出的模型在BIPED数据集上的ODS、OIS、AP分别达到了0.891、0.895、0.900和0.894、0.899、0.931,优于所有比较算法.在MDBD的数据集上也取得了最优的结果. 展开更多
关键词 边缘检测 卷积神经网络 注意力机制 多尺度融合
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部