期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双分支小波卷积自编码器和数据增强的深度聚类方法
1
作者 安瑞 鲁进 杨晶晶 《计算机科学》 北大核心 2025年第4期129-137,共9页
基于自编码器的深度聚类是无监督学习的代表算法,近年来在计算机视觉领域获得了诸多关注。相较于传统算法,自动编码器隐藏层紧凑的表示空间为聚类任务提供了更为灵活的条件。现有的自编码器聚类大多使用单分支编码器网络,而采用多个网... 基于自编码器的深度聚类是无监督学习的代表算法,近年来在计算机视觉领域获得了诸多关注。相较于传统算法,自动编码器隐藏层紧凑的表示空间为聚类任务提供了更为灵活的条件。现有的自编码器聚类大多使用单分支编码器网络,而采用多个网络结合的双编码器结构还有较大的探索空间。为此,提出了一种基于双分支小波卷积自编码器和数据增强的深度聚类方法DB-WCAE-DA(Deep Clustering Method Based on Dual-Branch Wavelet Convolutional Autoencoder and Data Augmentation)。首先,融合小波变换设计了一种双分支的卷积自编码器结构,将数据映射到低维特征空间进行聚类。其次,在一个分支上采用VMF混合模型构建聚类软分配,保留数据的几何结构和方向信息;在另一个分支上引入数据增强技术,并在嵌入空间中添加噪声,提高编码器对特征的学习能力。通过这种双分支嵌套式优化过程不断提炼数据特征,使得聚类结果更加可靠。最后,在多个基准数据集上验证了该模型的有效性。 展开更多
关键词 无监督学习 深度聚类 数据增强 小波变换 分支编码器
在线阅读 下载PDF
基于U-NET的双分支海上SAR溢油检测模型 被引量:1
2
作者 盛辉 曹文俊 +3 位作者 刘善伟 王大伟 杨俊芳 张杰 《海洋科学》 CAS CSCD 北大核心 2024年第7期1-10,共10页
为提高海上溢油SAR(Synthetic Aperture Radar)检测的准确率,本文提出一种基于U-NET和注意力门的海上溢油SAR检测模型(AW-net),该模型将U-NET中传统的单输入编码器替换为双分支编码器,分别输入纹理特征和SAR灰度特征,并进一步采用注意... 为提高海上溢油SAR(Synthetic Aperture Radar)检测的准确率,本文提出一种基于U-NET和注意力门的海上溢油SAR检测模型(AW-net),该模型将U-NET中传统的单输入编码器替换为双分支编码器,分别输入纹理特征和SAR灰度特征,并进一步采用注意力门融合纹理信息和灰度信息。实验利用1景海丝一号(HISEA-1)SAR数据构建样本训练集进行AW-net模型训练,分别应用1景HISEA-1 SAR数据和1景Radarsat-2SAR数据开展模型测试,溢油检测准确率均优于U-NET、AttentionU-NET和FCN等语义分割模型,说明该模型具有较强的强鲁棒性和应用潜力。 展开更多
关键词 溢油检测 SAR U-NET 注意力门 双分支编码器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部