期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双分支注意力U-Net的语音增强方法 被引量:2
1
作者 曹洁 王宸章 +2 位作者 梁浩鹏 王乔 李晓旭 《计算机应用研究》 CSCD 北大核心 2024年第4期1112-1116,共5页
针对语音增强网络对全局语音相关特征提取困难、对语音局部上下文信息的捕捉效果不佳的问题,提出了一种基于双分支注意力U-Net的时域语音增强方法,该方法使用U-Net编码器-解码器结构,将单通道带噪语音经过一维卷积后得到的高维时域特征... 针对语音增强网络对全局语音相关特征提取困难、对语音局部上下文信息的捕捉效果不佳的问题,提出了一种基于双分支注意力U-Net的时域语音增强方法,该方法使用U-Net编码器-解码器结构,将单通道带噪语音经过一维卷积后得到的高维时域特征作为输入。首先利用残差连接设计了基于Conformer的残差卷积来增强网络降噪的能力。其次设计了双分支注意力机制结构,利用全局和局部注意力获取带噪语音中更丰富的上下文信息,同时有效表示长序列特征,提取更多样的特征信息。最后结合时域频域损失函数构建了加权损失函数对网络进行训练,提高网络的语音增强性能。使用了多个指标对增强语音的质量和可懂度等进行评价,在公开数据集Voice Bank+DEMAND上的增强后的语音感知质量(PESQ)为3.11,短时可懂度(STOI)为95%,信号失真度(CSIG)为4.44,噪声失真测(CBAK)为3.60,综合质量测度(COVL)为3.81,其中PESQ相较于SE-Conformer提高了7.6%,相较于TSTNN提高了5.1%。实验结果表明,所提方法在语音降噪的各个指标都表现出更优的实验结果,能够完成语音增强任务的相关要求。 展开更多
关键词 语音增强 双分支注意力机制 时域 单通道
在线阅读 下载PDF
融合注意机制的多尺度自适应空洞卷积面部情感识别方法
2
作者 王春影 孟天宇 +2 位作者 张震 葛雄心 杨继伟 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期90-97,共8页
针对面部不连续动作单元的关联特征提取困难,以及不同面部区域对表情识别影响程度不一可能引入无用信息的问题,提出了一种基于双分支注意力机制的多尺度自适应空洞卷积模型(dual branching attention mechanism-adaptive multi-scale di... 针对面部不连续动作单元的关联特征提取困难,以及不同面部区域对表情识别影响程度不一可能引入无用信息的问题,提出了一种基于双分支注意力机制的多尺度自适应空洞卷积模型(dual branching attention mechanism-adaptive multi-scale dilated convolution,DAM-ADCNN)。模型通过双分支注意力机制生成特征映射,表征面部动作单元的局部和全局分布及关联关系;利用多尺度空洞卷积提取面部不连续动作单元的关键特征;采用自适应方式动态调整不同尺度关联特征的权重,以有效减少无用信息的干扰。结果表明,DAM-ADCNN模型在情感识别任务中的表现优于现有方法。在DEAP数据集的唤醒和效价维度上,模型的识别准确率分别提升了3.66%和3.99%。同时,在CK+数据集上,模型的识别准确率提高了3.93%。这些结果证明了DAM-ADCNN模型在面部表情情感识别中的有效性。 展开更多
关键词 面部情感识别 双分支注意力机制 空洞卷积 自适应权重
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部