期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合轴电压-振动特征的同步电机缺陷诊断
1
作者 张杭 关向雨 +2 位作者 廖景雯 徐欣灵 陈晓坤 《电机与控制学报》 北大核心 2025年第7期53-62,共10页
同步发电机运行过程中可能出现诸如转子偏心、匝间短路和静电荷等缺陷,危及电机的安全运行。在对不同缺陷下轴电压信号和机械振动信号非线性相关分析基础上,提出融合轴电压-振动特征和深度学习的同步发电机缺陷诊断方法。首先,搭建三相... 同步发电机运行过程中可能出现诸如转子偏心、匝间短路和静电荷等缺陷,危及电机的安全运行。在对不同缺陷下轴电压信号和机械振动信号非线性相关分析基础上,提出融合轴电压-振动特征和深度学习的同步发电机缺陷诊断方法。首先,搭建三相同步发电机缺陷物理模拟试验平台,获取不同工况和缺陷下轴电压信号和机械振动信号数据,采用核典型相关分析获取了轴电压信号和振动信号的相关系数;采用梅尔语谱进行轴电压和振动信号图谱预处理,采用并行双分支残差网络分别对轴电压和振动图谱的高维特征进行提取,并采用双线性池化算法对不同模态的高维特征进行融合,在此基础上构建了融合轴电压-振动特征的同步发电机缺陷分类模型。结果表明:轴电压信号和同步电机本体振动信号关联度在故障和正常情况下均超过0.9,所提出的轴电压-振动联合诊断模型在测试集上的准确度、漏报率和误报率等性能方面优于单一轴电压和单一振动诊断算法。本文工作旨在通过监测和分析发电机的运行状态,及时识别潜在故障,提高发电机的运行可靠性。 展开更多
关键词 轴电压 机械振动 相关分析 信息融合 故障诊断 并行双分支残差网络
在线阅读 下载PDF
Prediction of RNA m6A Methylation Sites in Multiple Tissues Based on Dual-branch Residual Network
2
作者 GUO Xiao-Tian GAO Wei +2 位作者 CHEN Dan LI Hui-Min TAN Xue-Wen 《生物化学与生物物理进展》 2025年第11期2900-2915,共16页
Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated ... Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated in diverse pathological conditions.Accurate prediction of m6A sites is critical for elucidating their regulatory mechanisms and informing drug development.However,traditional experimental methods are time-consuming and costly.Although various computational approaches have been proposed,challenges remain in feature learning,predictive accuracy,and generalization.Here,we present m6A-PSRA,a dual-branch residual-network-based predictor that fully exploits RNA sequence information to enhance prediction performance and model generalization.Methods m6A-PSRA adopts a parallel dual-branch network architecture to comprehensively extract RNA sequence features via two independent pathways.The first branch applies one-hot encoding to transform the RNA sequence into a numerical matrix while strictly preserving positional information and sequence continuity.This ensures that the biological context conveyed by nucleotide order is retained.A bidirectional long short-term memory network(BiLSTM)then processes the encoded matrix,capturing both forward and backward dependencies between bases to resolve contextual correlations.The second branch employs a k-mer tokenization strategy(k=3),decomposing the sequence into overlapping 3-mer subsequences to capture local sequence patterns.A pre-trained Doc2vec model maps these subsequences into fixeddimensional vectors,reducing feature dimensionality while extracting latent global semantic information via context learning.Both branches integrate residual networks(ResNet)and a self-attention mechanism:ResNet mitigates vanishing gradients through skip connections,preserving feature integrity,while self-attention adaptively assigns weights to focus on sequence regions most relevant to methylation prediction.This synergy enhances both feature learning and generalization capability.Results Across 11 tissues from humans,mice,and rats,m6A-PSRA consistently outperformed existing methods in accuracy(ACC)and area under the curve(AUC),achieving>90%ACC and>95%AUC in every tissue tested,indicating strong cross-species and cross-tissue adaptability.Validation on independent datasets—including three human cell lines(MOLM1,HEK293,A549)and a long-sequence dataset(m6A_IND,1001 nt)—confirmed stable performance across varied biological contexts and sequence lengths.Ablation studies demonstrated that the dual-branch architecture,residual network,and self-attention mechanism each contribute critically to performance,with their combination reducing interference between pathways.Motif analysis revealed an enrichment of m6A sites in guanine(G)and cytosine(C),consistent with known regulatory patterns,supporting the model’s biological plausibility.Conclusion m6A-PSRA effectively captures RNA sequence features,achieving high prediction accuracy and robust generalization across tissues and species,providing an efficient computational tool for m6A methylation site prediction. 展开更多
关键词 N6-methyladenosine site Doc2vec BiLSTM dual-branch residual network self-attention
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部