期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
基于多尺度特征融合的双分支手部姿态估计算法
1
作者 陈征 李晋江 《计算机工程与设计》 北大核心 2024年第10期3059-3065,共7页
由于RGB图像的深度歧义性,关节点的深度坐标相对于关节点的二维图像坐标来说更难预测。提出一种基于手部多尺度特征融合的双分支手部姿态估计算法,将手部关节点的二维图像坐标和深度坐标进行分组预测。采用FPN提取手部多尺度特征,提出... 由于RGB图像的深度歧义性,关节点的深度坐标相对于关节点的二维图像坐标来说更难预测。提出一种基于手部多尺度特征融合的双分支手部姿态估计算法,将手部关节点的二维图像坐标和深度坐标进行分组预测。采用FPN提取手部多尺度特征,提出特征融合模块,对手部多尺度特征进行融合增强,得到手部高层特征和低层特征;提出双分支网络结构,利用融合之后的手部高层特征和低层特征分别预测手部关节点的深度坐标和二维图像坐标。在两个公开的手势数据集上进行了充分实验,与当前最好方法相比,所提方法在平均关节误差指标上取得了当前最好结果。 展开更多
关键词 手部姿态估计 多尺度特征融合 特征提取 平均关节误差 人机交互 分组预测 分支网络
在线阅读 下载PDF
边缘引导的双分支网络SAR图像相干斑抑制方法
2
作者 朱磊 姚同钰 +3 位作者 车晨洁 姚丽娜 张博 潘杨 《北京航空航天大学学报》 北大核心 2025年第6期1852-1862,共11页
为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边... 为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边缘信息提取模块,增强模型的边缘感知能力;利用基于通道注意力的残差抑斑子网络(CARNet)、基于混合注意力的增强抑斑子网络(MAENet)及基于多分支并行的多尺度特征融合模块(MPMFFB)共同形成双分支抑斑网络,实现在相干斑抑制的同时更好地保护边缘细节。实验结果表明:与SAR-Transformer、HTNet等先进方法相比,所提方法具有更好的相干斑抑制与边缘保持性能;对仿真SAR图像,峰值信噪比、结构相似性、边缘保持指数分别平均提升0.96 dB、2.60%、0.60%;对真实SAR图像,等效视数提升14.12%以上,边缘保持指数平均提升4.52%。 展开更多
关键词 图像去噪 合成孔径雷达图像 相干斑抑制 分支网络 多尺度特征融合
在线阅读 下载PDF
采用级联策略融合边界特征的多尺度息肉分割网络 被引量:1
3
作者 易见兵 万建辉 +2 位作者 曹锋 李俊 陈鑫 《光学精密工程》 EI CAS CSCD 北大核心 2024年第18期2846-2860,共15页
结直肠息肉分割能有效辅助医生筛查大肠腺瘤,但息肉分割存在噪声较多、边界区分度不够等问题。针对以上问题,本文设计了一种采用级联策略融合边界特征的多尺度息肉分割网络。首先,本文提出了一种改进的通道分组空间增强模块,以增强骨干... 结直肠息肉分割能有效辅助医生筛查大肠腺瘤,但息肉分割存在噪声较多、边界区分度不够等问题。针对以上问题,本文设计了一种采用级联策略融合边界特征的多尺度息肉分割网络。首先,本文提出了一种改进的通道分组空间增强模块,以增强骨干网络提取的图像特征,从而提高通道和空间位置的相关性。其次,考虑到边界区分度不够,设计了一个级联特征融合网络,以更好地保留边界信息并提高边界区分度,从而提高分割精度。最后,引入了一种双分支混合上采样模块来获取更多的特征细节信息,以实现特征的互补以及捕获更完整有效的特征。在CVC-ClinicDB和Kvasir数据集上进行测试,本文算法的平均Dice系数分别为0.944,0.920,平均交并比分别为0.900,0.869;而M2SNet算法的平均Dice系数分别为0.922,0.912,平均交并比分别为0.880,0.861。在ETIS-LaribPolypDB,CVC-300和CVC-ColonDB数据集上进行测试,本文算法的平均Dice系数分别为0.776,0.915,0.782;而M2SNet算法的平均Dice系数分别为0.749,0.903,0.758。实验结果表明本文算法的分割精度较高,泛化能力较强。 展开更多
关键词 多尺度息肉分割 通道分组空间增强 边界特征增强 级联特征融合 分支上采样
在线阅读 下载PDF
基于双分支多尺度残差融合嵌套的SAR和多光谱图像融合架构与实验 被引量:4
4
作者 董张玉 许道礼 +5 位作者 张晋 安森 于金秋 李金徽 彭鹏 汪燕 《地理与地理信息科学》 CSCD 北大核心 2023年第1期23-30,共8页
基于深度学习融合合成孔径雷达(SAR)和多光谱(MS)图像的方法主要通过增加卷积层数量描述网络模型尺度,但未能提高算法对不同尺度空间细节特征的提取能力。该文设计双分支的多尺度残差融合嵌套连接网络架构(Double-branch Multiscale Res... 基于深度学习融合合成孔径雷达(SAR)和多光谱(MS)图像的方法主要通过增加卷积层数量描述网络模型尺度,但未能提高算法对不同尺度空间细节特征的提取能力。该文设计双分支的多尺度残差融合嵌套连接网络架构(Double-branch Multiscale Residual-fusion Nested-connections Net,DMRN-Net),将融合任务划分为细节提升和光谱保持两部分:在细节提升分路中,将SAR和MS图像中的高频信息分别经过多深度特征提取层、多尺度残差融合网络层及嵌套连接解码器得到重建图像;在光谱保持分路中,通过融合上采样后的MS图像和细节提升分路结果,将光谱信息注入融合图像中,从而得出融合结果。通过DMRN-Net和传统算法以及普通双分支网络的对比实验表明,DMRN-Net在主观判断和客观评价上均取得较好的融合结果,能在保持光谱信息的基础上,进一步增加图像的空间细节信息,验证了DMRN-Net在图像融合领域的重要价值。 展开更多
关键词 合成孔径雷达图像 多光谱图像 分支 多尺度残差融合网络 嵌套连接
在线阅读 下载PDF
融合双注意力机制的多尺度胰腺分割方法 被引量:2
5
作者 张国栋 唐晓艺 +1 位作者 鞠蓉晖 宫照煊 《计算机工程与设计》 北大核心 2024年第4期1189-1194,共6页
为解决CT图像中胰腺边界不规则导致分割精度不高的问题,提出一种融合双注意机制的多尺度U型网络模型。该模型由一个编码器及两个解码器组成,提高特征利用。针对模型中连续下采样导致特征空间信息损失的问题,提出一种金字塔注意力特征融... 为解决CT图像中胰腺边界不规则导致分割精度不高的问题,提出一种融合双注意机制的多尺度U型网络模型。该模型由一个编码器及两个解码器组成,提高特征利用。针对模型中连续下采样导致特征空间信息损失的问题,提出一种金字塔注意力特征融合模块,引入通道和空间两个独立注意力机制,提供多尺度输入信息并行采样,提高边界提取性能,提升分割精度。实验结果表明,该方法在ISICDM 2018数据集上的平均Dice系数为85.35%,具有效性。 展开更多
关键词 胰腺分割 注意力机制 解码器 金字塔池化 特征融合 边界提取 多尺度信息
在线阅读 下载PDF
基于多尺度空间注意力互补的红外与可见光图像融合
6
作者 张永兴 连博文 +2 位作者 顾乃庭 李方召 李杨 《光学精密工程》 北大核心 2025年第7期1152-1168,共17页
针对当前红外与可见光图像融合方法过度引入红外冗余信息导致复杂场景下无法平衡复杂场景信息,融合效果不佳的现状,提出基于多尺度空间注意力互补的红外和可见光图像融合方法,采用双分支卷积网络分别提取红外和可见光图像特征信息并进... 针对当前红外与可见光图像融合方法过度引入红外冗余信息导致复杂场景下无法平衡复杂场景信息,融合效果不佳的现状,提出基于多尺度空间注意力互补的红外和可见光图像融合方法,采用双分支卷积网络分别提取红外和可见光图像特征信息并进行差异互补,利用多尺度空间注意力互补处理后回归叠加至图像特征中,实现互补特征中途回归叠加的图像融合,有效平衡复杂场景信息。实验结果表明:相比于Densefuse,PIAFusion等主流融合方法,该方法在通用性较强的互信息(MI)方面分别提升了4.1%和4.3%,在视觉信息保真度(VIF)方面分别提升了5.0%和2.3%,有效保留了复杂场景下的目标特征信息并实现对冗余特征的有效抑制,具有良好的特征平衡能力,在复杂场景下目标检测和识别中具有潜在应用价值。 展开更多
关键词 图像融合 红外和可见光图像 分支卷积网络 差异互补 多尺度空间注意力 回归叠加
在线阅读 下载PDF
双特征流融合和边界感知的显著性目标检测 被引量:2
7
作者 杨鑫 朱恒亮 毛国君 《计算机工程与应用》 CSCD 北大核心 2024年第10期227-236,共10页
显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改... 显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改变输入图像尺寸来丰富多尺度信息,并自顶向下逐层聚合特征得到精细的预测结果。首先将输入图像调整为两种不同分辨率分别送入编码器,提取丰富的多层级特征形成双特征流;其次将双特征流自顶向下逐层融合,生成由粗到细的显著图;最后构建了边界感知结构,凭借上下文语义信息的指导生成精细的物体轮廓。在五个公开数据集上进行了大量实验,实验结果表明,所提算法在结构相似性(Sm)等多个指标上取得了更高的检测精度,生成的显著图目标完整且边缘清晰。 展开更多
关键词 显著性目标检测 全卷积神经网络 多尺度学习 特征流融合 边界感知
在线阅读 下载PDF
基于双分支多尺度融合网络的毫米波SAR图像多目标语义分割方法 被引量:5
8
作者 丁俊华 袁明辉 《光电工程》 CAS CSCD 北大核心 2023年第12期70-80,共11页
在毫米波合成孔径雷达(SAR)安检成像违禁品的检测与识别中,存在着目标尺寸过小、目标被部分遮挡和多目标之间重叠等复杂情况,不利于违禁品的准确识别。针对这些问题,提出了一种基于双分支多尺度融合网络(DBMFnet)的违禁品检测方法。该... 在毫米波合成孔径雷达(SAR)安检成像违禁品的检测与识别中,存在着目标尺寸过小、目标被部分遮挡和多目标之间重叠等复杂情况,不利于违禁品的准确识别。针对这些问题,提出了一种基于双分支多尺度融合网络(DBMFnet)的违禁品检测方法。该网络使用Encoder-Decoder的结构,在Encoder阶段,提出一种双分支并行特征提取网络(DBPFEN)来增强特征提取;在Decoder阶段,提出一种多尺度融合模块(MSFM)来提高对目标的检测能力。实验结果表明,该方法的均交并比(mIoU)均优于现有的语义分割方法,降低了漏检与错检率。 展开更多
关键词 毫米波合成孔径雷达 违禁品检测 深度学习 语义分割 分支多尺度融合网络
在线阅读 下载PDF
面向城市复杂场景的多尺度监督融合变化检测
9
作者 潘建平 谢鹏 +2 位作者 郭志豪 林娜 张慧娟 《遥感信息》 CSCD 北大核心 2024年第4期23-32,共10页
城市复杂场景中,地物形状多样,光照和成像角度变化大会导致变化检测结果受到干扰。为解决这些问题,文章提出了一种双上下文多尺度监督融合的网络模型(dual context multi-scale supervised fusion network model,DCMSFNet)。首先,在编... 城市复杂场景中,地物形状多样,光照和成像角度变化大会导致变化检测结果受到干扰。为解决这些问题,文章提出了一种双上下文多尺度监督融合的网络模型(dual context multi-scale supervised fusion network model,DCMSFNet)。首先,在编码部分使用双上下文增强模块获得地物丰富的全局上下文信息。在解码部分,采用级联的方法组合特征,然后通过自适应注意力模块捕捉不同尺度的变化关系,设计多尺度监督融合模块,增强深度网络融合,获得具有更高辨别能力的变化区域特征,将不同层级的输出结果与主网络的重构变化图融合形成最终的变化检测结果。该模型在LEVIR-CD和SYSU-CD变化检测数据集取得了较好的结果,F1-score分别提高了1.58%和2.17%,可更加精确识别复杂场景的变化区域,进一步减少无关因素引起的误检和漏检,且对目标地物边缘的检测更加平滑。 展开更多
关键词 深度学习 变化检测 上下文增强 自适应注意力模块 多尺度监督融合
在线阅读 下载PDF
基于双关键点的拥挤行人检测方法
10
作者 沈继锋 盛常宝 +1 位作者 陈逸飞 左欣 《江苏大学学报(自然科学版)》 北大核心 2025年第2期140-148,共9页
针对行人检测中远距离目标像素稀少和遮挡产生人体模式信息缺失导致的严重漏检问题,提出一种基于双关键点组合的行人检测方法.该方法利用人体头部与中心区域的关键点,有效提取和融合行人的判别语义特征,从而显著降低行人的漏检率.首先,... 针对行人检测中远距离目标像素稀少和遮挡产生人体模式信息缺失导致的严重漏检问题,提出一种基于双关键点组合的行人检测方法.该方法利用人体头部与中心区域的关键点,有效提取和融合行人的判别语义特征,从而显著降低行人的漏检率.首先,在深层聚合主干特征网络上引入可变形卷积来扩大感受野,增强人体模式的语义信息;其次,设计了一种基于关键点组合的双分支联合检测模块,通过重新定义不同分支的正样本,强化小尺度与遮挡目标的语义信息;最后,借助非极大值抑制算法融合双分支检测结果.结果表明:在CityPerson验证数据集的普通、小尺度与严重遮挡子集上,文中方法的平均漏检率分别达到8.24%、11.81%和30.59%,特别是对于严重遮挡子集,漏检率相比传统方法ACSP降低15.71%;文中方法检测速度也达到16帧/s;在CrowdHuman上文中方法的平均精度和平均漏检率分别达到86.30%和45.52%.与其他先进方法相比,文中方法在平均精度、漏检率和检测速度方面都呈现出更优异的性能,在密集行人的复杂场景中具有较好的应用价值. 展开更多
关键词 行人检测 拥挤场景 遮挡目标 尺度目标 关键点 可变形卷积 分支融合 非极大值抑制
在线阅读 下载PDF
基于双分支注意力网络的青光眼诊断方法
11
作者 张旭刚 赵鲁江 +1 位作者 江志刚 张华 《武汉科技大学学报》 CAS 北大核心 2024年第5期384-393,共10页
通过分割眼底图像的视杯(OC)与视盘(OD)区域并计算二者直径之比得到的杯盘比(CDR)是诊断青光眼的一个重要指标,然而现有视杯/视盘分割方法的准确度较低,为此提出一种基于双分支注意力网络的青光眼诊断方法。首先,在图像输入主干网络前... 通过分割眼底图像的视杯(OC)与视盘(OD)区域并计算二者直径之比得到的杯盘比(CDR)是诊断青光眼的一个重要指标,然而现有视杯/视盘分割方法的准确度较低,为此提出一种基于双分支注意力网络的青光眼诊断方法。首先,在图像输入主干网络前使用边界到像素方向(BPD)方法增强眼底图像的轮廓信息;其次,在网络编码器部分结合ConvNeXt的全局交互优势以及U-Net的局部处理优势,充分提取全局和局部的病理语义信息;最后,在解码器特征重建阶段采用多重注意力融合模块,通过直接和间接映射重组两个编码器和上采样模块提取的平滑和突出特征,深度挖掘目标区域信息,以提高模型对视杯/视盘区域分割的准确性。在REFUGE、DRISHTI-GS和RIM-ONEr3三个具有互补性的临床数据集上进行对比实验,验证了所设计的改进模块在提高眼底图像分割效果上的有效性,而且本文方法可有效平衡OC和OD两个目标区域的分割精度,在定量指标和可视化效果上均优于对比方法。 展开更多
关键词 青光眼 眼底图像 视杯/视盘分割 分支注意力网络 多重注意力融合模块
在线阅读 下载PDF
双端输入型嵌套融合多尺度信息的织物瑕疵检测 被引量:3
12
作者 曲皓 狄岚 +1 位作者 梁久祯 刘昊 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期398-412,共15页
针对织物瑕疵检测中复杂纹理区域误判和边缘检测模糊问题,提出一种双端输入型网络架构WNet,使用两个骨干分支分别提取多尺度局部和全局特征,依靠自注意力机制的全局建模能力,在卷积深层网络中补充全局信息,减少深层网络中纹理特征的冗余... 针对织物瑕疵检测中复杂纹理区域误判和边缘检测模糊问题,提出一种双端输入型网络架构WNet,使用两个骨干分支分别提取多尺度局部和全局特征,依靠自注意力机制的全局建模能力,在卷积深层网络中补充全局信息,减少深层网络中纹理特征的冗余.为了减少深层网络中局部细节信息的丢失,提出一种轻量级双分支池化金字塔,将浅层多尺度细节特征引入深层模块.搭建多尺度嵌套双分支模块,将各级尺度下不同感受野的特征信息进行融合,该模块更加关注瑕疵特征,可以生成较精确的预测图.实验证明,提出的方法在ZJU-Leaper的四个数据集上的综合评价指标较优,尤其是fmeasure、阳性预测率和阴性预测率较高. 展开更多
关键词 织物瑕疵检测 WNet 自注意力机制 分支池化金字塔 多尺度嵌套分支模块
在线阅读 下载PDF
基于注意力和挤压-激励Inception的双分支合成语音检测
13
作者 王晗 赵腊生 +2 位作者 张强 程银清 邱泽鹏 《计算机应用》 CSCD 北大核心 2024年第10期3217-3222,共6页
合成语音攻击给人们的生活带来巨大的威胁。为了解决现有模型从冗余信息中提取关键信息能力不足和单一模型无法综合利用多检测模型优势的问题,提出一种基于注意力和挤压-激励(SE)模块Inception(SE-Inc)的双分支(Dual-ABIB)合成语音检测... 合成语音攻击给人们的生活带来巨大的威胁。为了解决现有模型从冗余信息中提取关键信息能力不足和单一模型无法综合利用多检测模型优势的问题,提出一种基于注意力和挤压-激励(SE)模块Inception(SE-Inc)的双分支(Dual-ABIB)合成语音检测模型。首先,基于SincNet(Sinc-based convolutional neural Network)提取的初始特征图训练注意力分支合成语音检测模型,并输出注意力图;其次,将注意力图和初始特征图相乘后再叠加,并将结果作为SE-Inc分支的输入进行训练;最后,通过决策级加权融合处理2个分支获得的分类分数,从而实现合成语音检测。实验结果表明,所提模型在参数量为539×10^(3)的情况下,在ASVspoof2019数据集上获得了0.0332的最小串联检测代价函数(mint-DCF)和1.15%的等错误率(EER);与SE-ResABNet(Squeeze-Excitation ResNet Attention Branch Network)相比,所提模型在参数量仅为它的56%的情况下,min t-DCF和EER分别下降了34.5%和39.2%;同时,在ASVspoof2015和ASVspoof2021数据集上所提模型表现了更好的泛化能力。以上结果验证了所提模型能够在参数量较小的情况下,获得更低的min t-DCF和EER。 展开更多
关键词 注意力机制 挤压-激励模块 分支 合成语音检测 决策级融合
在线阅读 下载PDF
基于无人船的双分支解码轻量型分割网络研究
14
作者 刘丹 张建杰 《激光杂志》 CAS 北大核心 2024年第3期175-181,共7页
为保证水面无人艇(USVs)进行水上任务时能够顺利航行,需要对河道信息进行精确的提取,因此,对河道语义分割的网络模型进行了研究。针对河道图像分割中类间不一致和类内不一致的问题,文中提出了分割网络DBDL-Net,网络中设计双分支解码结... 为保证水面无人艇(USVs)进行水上任务时能够顺利航行,需要对河道信息进行精确的提取,因此,对河道语义分割的网络模型进行了研究。针对河道图像分割中类间不一致和类内不一致的问题,文中提出了分割网络DBDL-Net,网络中设计双分支解码结构和双重损失函数,分别把握语义信息和空间信息;同时在编码部分设计了多尺度残差的轻量模块,一方面减少参数,一方面以不同的比例捕捉特征信息。最后在USVIn-land数据集上对模型进行消融和对比实验,实验结果表明:DBDL-Net的精确度和平均交并比最终达到了93.619%和87.682%,与其他先进分割网络相比,DBDL-Net也具有更佳的综合表现。 展开更多
关键词 水面无人艇 DBDL-Net 分支解码结构 重损失函数 多尺度残差的轻量模块
在线阅读 下载PDF
全局上下文引导的双代价聚合立体匹配网络
15
作者 方伟舟 孟小艳 +1 位作者 周洪 丁晓晨 《现代电子技术》 北大核心 2025年第17期104-111,共8页
针对目前立体匹配算法在无纹理、遮挡区域和边缘模糊区域存在的问题,提出一种全局上下文引导的双代价聚合立体匹配网络——GCDANet。首先,在特征提取部分利用引导全局上下文特征的注意力模块捕获特征的细节与丰富的全局上下文信息,提高... 针对目前立体匹配算法在无纹理、遮挡区域和边缘模糊区域存在的问题,提出一种全局上下文引导的双代价聚合立体匹配网络——GCDANet。首先,在特征提取部分利用引导全局上下文特征的注意力模块捕获特征的细节与丰富的全局上下文信息,提高特征的表达能力和鲁棒性;其次,构建组相关代价体和拼接代价体,每个代价体单独处理;然后,提出一个双分支代价聚合结构,通过设计的多尺度注意力特征融合模块,融合代价聚合网络上下分支的特征以及特征提取模块中的多尺度特征,从而获得准确和高分辨率的几何信息;最后,通过视差回归以获得视差图。实验结果表明,GCDANet在多个数据集上的性能优于基准模型(GWCNet)。在SceneFlow数据集中的评价指标EPE和D_(1)降至0.60 pixel和2.08%,在KITTI2012数据集中的评价指标3 pixel-All和3 pixel-Noc降至1.61%和1.29%。在KITTI2015数据集测试的评价指标中,所有像素区域的D_(1)-All降至1.94%。所提网络在处理复杂场景时具有较强的适应性和精确性,在自动驾驶、目标检测和三维重建等需要精确立体匹配领域有着广泛的应用前景。 展开更多
关键词 立体匹配 特征提取 全局上下文信息 代价体 分支代价聚合 多尺度特征 特征融合 视差回归
在线阅读 下载PDF
边缘信息引导多级尺度特征融合的显著性目标检测方法 被引量:2
16
作者 王向军 李名洋 +2 位作者 王霖 刘峰 王玮 《红外与激光工程》 EI CSCD 北大核心 2023年第1期253-262,共10页
针对基于FCN和U型网络架构的深度学习显著性目标检测方法提取的显著性图存在边界不清晰和结构不完整的问题,文中提出了一种基于边缘信息引导多级尺度特征融合网络(EGMFNet)。EGMFNet使用多通道融合残差块(RCFBlock)以嵌套的U型网络架构... 针对基于FCN和U型网络架构的深度学习显著性目标检测方法提取的显著性图存在边界不清晰和结构不完整的问题,文中提出了一种基于边缘信息引导多级尺度特征融合网络(EGMFNet)。EGMFNet使用多通道融合残差块(RCFBlock)以嵌套的U型网络架构作为主干模型。同时,在网络的较低层级引入具有边缘信息引导的全局空间注意力模块(EGSAM)以增强空间特征及边缘特征。此外,在损失函数中引入了图像边界损失,用于提升显著性图的质量并在学习过程中保留更加清晰的边界。在四个基准数据集上进行实验,实验结果表明,文中方法的F值较典型方法提升1.5%、2.7%、1.8%和1.6%,验证了EGMFNet网络模型的有效性。 展开更多
关键词 显著性目标检测 多尺度特征融合 边缘信息引导 空间注意力模块 边界损失函数
在线阅读 下载PDF
基于深度学习的轻量级实时图像分割方法研究 被引量:1
17
作者 李建锋 熊明强 +3 位作者 陈园琼 王宗达 向涛 孙培玮 《通信学报》 北大核心 2025年第2期176-190,共15页
针对深度学习在各领域应用中因模型复杂度提升而引发的计算与存储负担,尤其在图像分割任务中面临的算法复杂性、实时响应不足及高内存占用问题,提出了一种轻量级且高效的分割网络架构——多尺度叠加融合网络(MSFNet)。MSFNet设计了一个... 针对深度学习在各领域应用中因模型复杂度提升而引发的计算与存储负担,尤其在图像分割任务中面临的算法复杂性、实时响应不足及高内存占用问题,提出了一种轻量级且高效的分割网络架构——多尺度叠加融合网络(MSFNet)。MSFNet设计了一个双分支多尺度边界融合模块,该模块通过融合不同尺度的特征信息与边界细节,有效提升了图像分割精度,同时显著减少了模型参数量。实验结果表明,MSFNet在3个公开数据集上表现优异,其模型参数量仅为0.6×10^(6),在RTX 3070 GPU上处理大小为800像素×800像素的图像仅需12 ms,显著提升了分割任务的执行效率和资源利用率。因此,该模型特别适合应用于资源有限的边缘设备或移动设备中,为实时图像分割应用提供了有力的技术支撑。 展开更多
关键词 图像分割 轻量级实时网络 双分支多尺度边界融合模块
在线阅读 下载PDF
基于RFB和超网络的跨尺度多层次真实失真图像质量评价方法
18
作者 周怀博 贾惠珍 王同罕 《现代电子技术》 北大核心 2024年第9期47-52,共6页
为了能在真实失真图像质量领域实现高效的跨尺度学习,提出一种双分支特征提取方法。首先,利用对比学习方法自监督地提取跨尺度、跨颜色空间的图像内容感知特征;随后,采用基于扩张感受野和超网络的策略,将多层次特征信息与跨尺度信息进... 为了能在真实失真图像质量领域实现高效的跨尺度学习,提出一种双分支特征提取方法。首先,利用对比学习方法自监督地提取跨尺度、跨颜色空间的图像内容感知特征;随后,采用基于扩张感受野和超网络的策略,将多层次特征信息与跨尺度信息进行循环交互融合,以获取更贴近人类感知的图像质量特征。基于公开真实失真数据库的实验结果表明,所提算法在真实失真图像质量评价上取得了优越性能,而且,通过两个尺度的实验结果展示了该算法实现了更高效的跨尺度学习,从而为图像多尺度深度网络的应用提供了较好基础。 展开更多
关键词 图像质量评价 无参考 真实失真 尺度学习 多特征融合 分支特征提取
在线阅读 下载PDF
注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测
19
作者 张志远 胡冀苏 +3 位作者 张跃跃 钱旭升 周志勇 戴亚康 《上海交通大学学报》 北大核心 2025年第8期1216-1224,共9页
基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤... 基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤分割任务为辅助任务的注意力引导多任务学习网络用于PLNM预测.首先,在肿瘤分割网络中,提出多分支各向异性大核注意力模块,通过不同分支和各向异性大卷积核的融合扩大的感受野以有效捕获肿瘤的局部和全局信息.其次,在PLNM预测网络中,设计多尺度特征交互融合注意力模块,对多尺度特征进行层次化融合筛选.在320例数据集的实验中,所提方法的精度召回曲线下面积值和受试者操作特征曲线下面积值分别为(85.44±2.04)%和(91.86±2.18)%,优于经典的单任务分类方法和多任务方法. 展开更多
关键词 前列腺癌盆腔淋巴结转移 多任务学习 分支各向异性大核注意力模块 多尺度特征交互融合注意力模块 多参数磁共振
在线阅读 下载PDF
基于多路光流信息的微光视频增强算法
20
作者 刘书生 王九杭 童官军 《现代电子技术》 北大核心 2024年第16期13-22,共10页
图像和视频是记录真实场景信息的重要媒介,它们包含丰富而详细的视觉内容,可以开发各种智能系统来执行各种任务。特别是对于低照度条件下的视频,提升其清晰度和细节可以更好地表现和还原真实场景。针对在夜间低照度环境条件下对周围环... 图像和视频是记录真实场景信息的重要媒介,它们包含丰富而详细的视觉内容,可以开发各种智能系统来执行各种任务。特别是对于低照度条件下的视频,提升其清晰度和细节可以更好地表现和还原真实场景。针对在夜间低照度环境条件下对周围环境感知的需求,提出一种基于多路光流信息时间一致性的微光视频增强算法。通过引入预测的光流与真实的光流信息,构建三分支孪生网络对微光视频进行增强;同时针对微光视频存在的低信噪比以及模糊化问题,设计一种基于双尺度注意力机制的微光视频去噪模块(CA-Swin模块),以提升网络的去噪性能。通过在DAVIS数据集上进行对比实验和评估,得出所提网络在增强微光视频方面更高效,鲁棒性显著;且该策略还具有通用性,可以直接扩展到大规模数据集。 展开更多
关键词 微光视频增强 光流信息 时间一致性 分支孪生网络 尺度注意力机制 微光视频去噪模块 视频帧
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部