期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
构造型神经网络双交叉覆盖增量学习算法 被引量:21
1
作者 陶品 张钹 叶榛 《软件学报》 EI CSCD 北大核心 2003年第2期194-201,共8页
研究了基于覆盖的构造型神经网络(cover based constructive neural networks,简称CBCNN)中的双交叉覆盖增量学习算法(BiCovering algorithm,简称BiCA).根据CBCNN的基本思想,该算法进一步通过构造多个正反覆盖簇,使得网络在首次构造完... 研究了基于覆盖的构造型神经网络(cover based constructive neural networks,简称CBCNN)中的双交叉覆盖增量学习算法(BiCovering algorithm,简称BiCA).根据CBCNN的基本思想,该算法进一步通过构造多个正反覆盖簇,使得网络在首次构造完成后还可以不断地修改与优化神经网络的参数与结构,增加或删除网络中的节点,进行增量学习.通过分析认为,BiCA学习算法不但保留了CBCNN网络的优点与特点,而且实现了增量学习并提高了CBCNN网络的泛化能力.仿真实验结果显示,该增量学习算法在神经网络初始分类能力较差的情况下具有快速学习能力,并且对样本的学习顺序不敏感. 展开更多
关键词 构造型神经网络 双交叉覆盖增量学习算法 人工神经网络 模式识别
在线阅读 下载PDF
构造性覆盖方法的增量学习算法 被引量:3
2
作者 张燕平 杜玲 赵姝 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期699-704,共6页
构造性机器学习方法——覆盖算法学习速度快、复杂度低、可解释性强,能有效地解决有导师学习问题,并取得了很好的效果,但构造神经元的权值即取新覆盖中心时通常人为地给定一个准则,并未遵循样本的分布特征求得最优解.由此采用佳点集理... 构造性机器学习方法——覆盖算法学习速度快、复杂度低、可解释性强,能有效地解决有导师学习问题,并取得了很好的效果,但构造神经元的权值即取新覆盖中心时通常人为地给定一个准则,并未遵循样本的分布特征求得最优解.由此采用佳点集理论求取覆盖中心,以改进覆盖算法.针对大规模或动态数据集的分类问题,将构造性覆盖方法与增量学习的思想相结合,提出了构造性覆盖方法的增量学习算法.该算法利用改进的覆盖算法作为基础学习器,通过连续地对新增样本进行测试而反复不断地提炼已有模型,体现了对样本的"渐近式"学习.对标准数据集的实验结果表明,这种增量学习算法是有效的. 展开更多
关键词 构造性机器学习方法 覆盖算法 佳点集 增量学习
在线阅读 下载PDF
覆盖学习的道路优化算法 被引量:5
3
作者 严晨 李凡长 《软件学报》 EI CSCD 北大核心 2015年第11期2781-2794,共14页
在之前的研究中,已经针对李群多连通空间上具有不同类别特征的研究对象,提出了多连通覆盖学习算法,成功地将覆盖学习应用到多连通李群空间.主要针对多连通覆盖学习算法中连通道路的交叉问题,考虑在李群空间上寻找一条测地曲线,使得映射... 在之前的研究中,已经针对李群多连通空间上具有不同类别特征的研究对象,提出了多连通覆盖学习算法,成功地将覆盖学习应用到多连通李群空间.主要针对多连通覆盖学习算法中连通道路的交叉问题,考虑在李群空间上寻找一条测地曲线,使得映射后不同单连通空间上的道路的关联度最小化、同一单连通空间上的道路的关联度最大化,从而实现连通空间上类别判别性能的优化.首先回顾李群连通性质的相关知识;然后,简单介绍了多连通覆盖学习算法,并针对问题给出新的优化算法;最终,通过与经典覆盖学习算法、李群均值算法以及原始算法的比较实验,证明了该优化算法具有更好的分类性能. 展开更多
关键词 覆盖学习 多连通李群 多连通覆盖学习算法 道路优化 道路交叉
在线阅读 下载PDF
多李群覆盖学习优化算法 被引量:1
4
作者 吴鲁辉 李凡长 张莉 《计算机科学》 CSCD 北大核心 2018年第1期108-112,共5页
目前,已针对李群多连通空间上的道路交叉问题提出了多李群核覆盖学习算法,降低了道路交叉情况,使得分类正确率有了显著提高。但是,核学习算法的性能依赖于核函数的选择。考虑利用李群同态映射将原始李群样本映射到目标李群空间中,使在... 目前,已针对李群多连通空间上的道路交叉问题提出了多李群核覆盖学习算法,降低了道路交叉情况,使得分类正确率有了显著提高。但是,核学习算法的性能依赖于核函数的选择。考虑利用李群同态映射将原始李群样本映射到目标李群空间中,使在目标李群空间中不同单连通空间上的道路的关联度最小化,同一单连通空间上的道路的关联度最大化,从而减少道路交叉问题。 展开更多
关键词 李群 覆盖学习 道路交叉 学习算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部