The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial ...The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial Markov chain(SMC) that can move in the whole space. Generally, the theoretical backbone of MCRF is conditional independence assumption, which is a way around the problem of knowing joint probabilities of multi-points. This so-called Naive Bayes assumption should not be taken lightly and should be checked whenever possible because it is mathematically difficult to prove. Rather than trap in this independence proving, an appropriate potential function in MRF theory is chosen instead. The MCRF formulas are well deduced and the joint probability of MRF is presented by localization approach, so that the complicated parameter estimation algorithm and iteration process can be avoided. The MCRF model is then applied to the lithofacies identification of a region and compared with triplex Markov chain(TMC) simulation. Analyses show that the MCRF model will not cause underestimation problem and can better reflect the geological sedimentation process.展开更多
The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of...The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.展开更多
An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information a...An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.展开更多
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio...In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.展开更多
The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean ...The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean square(NLMS) algorithm in EC applications where the input signal is highly correlated. Since the APA with a constant step-size has to make compromise between the performance criteria 1) and 2), a variable step-size APA(VSS-APA) provides a more reliable solution. A nonparametric VSS-APA(NPVSS-APA) is proposed by recovering the background noise within the error signal instead of cancelling the a posteriori errors. The most problematic term of its variable step-size formula is the value of background noise power(BNP). The power difference between the desired signal and output signal, which equals the power of error signal statistically, has been considered the BNP estimate in a rough manner. Considering that the error signal consists of background noise and misalignment noise, a precise BNP estimate is achieved by multiplying the rough estimate with a corrective factor. After the analysis on the power ratio of misalignment noise to background noise of APA, the corrective factor is formulated depending on the projection order and the latest value of variable step-size. The new algorithm which does not require any a priori knowledge of EC environment has the advantage of easier controllability in practical application. The simulation results in the EC context indicate the accuracy of the proposed BNP estimate and the more effective behavior of the proposed algorithm compared with other versions of APA class.展开更多
基金Project(2011ZX05002-005-006) supported by the National Science and Technology Major Research Program during the Twelfth Five-Year Plan of China
文摘The inner relationship between Markov random field(MRF) and Markov chain random field(MCRF) is discussed. MCRF is a special MRF for dealing with high-order interactions of sparse data. It consists of a single spatial Markov chain(SMC) that can move in the whole space. Generally, the theoretical backbone of MCRF is conditional independence assumption, which is a way around the problem of knowing joint probabilities of multi-points. This so-called Naive Bayes assumption should not be taken lightly and should be checked whenever possible because it is mathematically difficult to prove. Rather than trap in this independence proving, an appropriate potential function in MRF theory is chosen instead. The MCRF formulas are well deduced and the joint probability of MRF is presented by localization approach, so that the complicated parameter estimation algorithm and iteration process can be avoided. The MCRF model is then applied to the lithofacies identification of a region and compared with triplex Markov chain(TMC) simulation. Analyses show that the MCRF model will not cause underestimation problem and can better reflect the geological sedimentation process.
基金Project(2007CB714006) supported by the National Basic Research Program of China Project(90815023) supported by the National Natural Science Foundation of China
文摘The hybrid genetic algorithm is utilized to facilitate model parameter estimation.The tri-dimensional compression tests of soil are performed to supply experimental data for identifying nonlinear constitutive model of soil.In order to save computing time during parameter inversion,a new procedure to compute the calculated strains is presented by multi-linear simplification approach instead of finite element method(FEM).The real-coded hybrid genetic algorithm is developed by combining normal genetic algorithm with gradient-based optimization algorithm.The numerical and experimental results for conditioned soil are compared.The forecast strains based on identified nonlinear constitutive model of soil agree well with observed ones.The effectiveness and accuracy of proposed parameter estimation approach are validated.
文摘An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.
基金Projects(20976048, 21176072) supported by the National Natural Science Foundation of ChinaProject provided by the Fundamental Research Fund for Central Universities
文摘In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.
文摘The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean square(NLMS) algorithm in EC applications where the input signal is highly correlated. Since the APA with a constant step-size has to make compromise between the performance criteria 1) and 2), a variable step-size APA(VSS-APA) provides a more reliable solution. A nonparametric VSS-APA(NPVSS-APA) is proposed by recovering the background noise within the error signal instead of cancelling the a posteriori errors. The most problematic term of its variable step-size formula is the value of background noise power(BNP). The power difference between the desired signal and output signal, which equals the power of error signal statistically, has been considered the BNP estimate in a rough manner. Considering that the error signal consists of background noise and misalignment noise, a precise BNP estimate is achieved by multiplying the rough estimate with a corrective factor. After the analysis on the power ratio of misalignment noise to background noise of APA, the corrective factor is formulated depending on the projection order and the latest value of variable step-size. The new algorithm which does not require any a priori knowledge of EC environment has the advantage of easier controllability in practical application. The simulation results in the EC context indicate the accuracy of the proposed BNP estimate and the more effective behavior of the proposed algorithm compared with other versions of APA class.