期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
基于参数自适应脉冲耦合神经网络的黄瓜目标分割 被引量:7
1
作者 王海青 姬长英 +1 位作者 顾宝兴 田光兆 《农业机械学报》 EI CAS CSCD 北大核心 2013年第3期204-208,共5页
对脉冲耦合神经网络的参数进行简化,并自适应确定各参数,将图像的空间信息和灰度信息耦合到加权耦合连接系数中,进行温室黄瓜图像分割,采用二维Tsallis熵选择最佳迭代结果。试验结果表明:用区域对比度(GC)和区域一致性(UC)评价方法评价... 对脉冲耦合神经网络的参数进行简化,并自适应确定各参数,将图像的空间信息和灰度信息耦合到加权耦合连接系数中,进行温室黄瓜图像分割,采用二维Tsallis熵选择最佳迭代结果。试验结果表明:用区域对比度(GC)和区域一致性(UC)评价方法评价,该方法的分割效果好于采用香农熵和最小交叉熵终止迭代的标准脉冲耦合神经网络分割效果。 展开更多
关键词 黄瓜 机器视觉 图像分割 参数自适应 脉冲耦合神经网络 加权耦合连接系数
在线阅读 下载PDF
基于非下采样剪切波变换—参数自适应脉冲耦合神经网络的属性融合裂缝预测方法 被引量:4
2
作者 汤韦 李景叶 +3 位作者 王建花 薄昕 耿伟恒 叶玮 《石油地球物理勘探》 EI CSCD 北大核心 2022年第1期52-61,I0002,I0003,共12页
常用的叠后地震属性主要有相干体(描述波形相似性)、曲率体(表征构造应力引起的地层弯曲程度)、倾角体(刻画地层构造变化特征)等,但仅仅依靠单一属性很难准确地预测地下裂缝分布情况。为此,提出一种基于非下采样剪切波变换(NSST)—参数... 常用的叠后地震属性主要有相干体(描述波形相似性)、曲率体(表征构造应力引起的地层弯曲程度)、倾角体(刻画地层构造变化特征)等,但仅仅依靠单一属性很难准确地预测地下裂缝分布情况。为此,提出一种基于非下采样剪切波变换(NSST)—参数自适应脉冲耦合神经网络(PA-PCNN)的属性融合裂缝预测方法,该方法基于NSST分解算法,将多种属性数据分解为高、低频子带,将融合后的多尺度、多方向高、低频子带进行数据重构,得到最终的多属性融合结果,可进一步提取裂缝的轮廓及细节信息。具体步骤为:①提取描述相同尺度裂缝的多种地震属性(相干、曲率及倾角等属性),通过NSST将多种属性分解为高、低频子带,其中高频子带包含更多的裂缝细节信息,低频子带可更好地刻画裂缝轮廓且具有丰富的能量信息。②对高频子带运用PA-PCNN模型进行融合,无需人工设置参数,得到更全面的高频数据;结合八邻域的改进拉普拉斯算子加权和与局部能量加权方法对低频子带进行融合,使低频数据更好地保留细节及能量信息,以得到丰富的低频数据。③通过逆NSST方法有效地完成属性融合裂缝预测。运用所提方法对M区属性数据进行测试,并对比了不同方法的属性融合裂缝预测结果,证明基于NSST—PAPCNN的属性融合裂缝预测方法能够更有效地预测裂缝。 展开更多
关键词 非下采样剪切波变换 脉冲偶合神经网络 自适应参数 属性融合 裂缝预测
在线阅读 下载PDF
脉冲耦合神经网络在图像处理中的参数确定 被引量:20
3
作者 于江波 陈后金 +1 位作者 王巍 李居朋 《电子学报》 EI CAS CSCD 北大核心 2008年第1期81-85,共5页
脉冲耦合神经网络(PCNN)模型可有效地应用于图像处理领域.但目前在PCNN模型理论方面的研究较少,参数的确定仍停留在经验阶段,这很大程度上限制了PCNN模型的发展.本文对PCNN模型进行理论上的推导,特别是模型各参数对PCNN特性的影响,给出... 脉冲耦合神经网络(PCNN)模型可有效地应用于图像处理领域.但目前在PCNN模型理论方面的研究较少,参数的确定仍停留在经验阶段,这很大程度上限制了PCNN模型的发展.本文对PCNN模型进行理论上的推导,特别是模型各参数对PCNN特性的影响,给出了PCNN模型应用于图像处理中各参数确定的准则.在将其应用于眼底图像处理中,取得与人工参数选取相似的效果,表现出较好的鲁棒性. 展开更多
关键词 脉冲耦合神经网络 参数确定 计算机仿真 图像处理
在线阅读 下载PDF
自适应脉冲耦合神经网络在图像处理中应用 被引量:5
4
作者 马义德 绽琨 齐春亮 《系统仿真学报》 CAS CSCD 北大核心 2008年第11期2897-2900,2930,共5页
尽管Johnson提出的PCNN模型具有强大的图像处理功能,以时间序列进行特征提取时具有旋转、尺度、平移、扭曲不变性,可实践中发现依然存在着不足,特别对图像亮度、对比度比较敏感。添加了误差反向传播(Error Back Propagation,EBP)学习准... 尽管Johnson提出的PCNN模型具有强大的图像处理功能,以时间序列进行特征提取时具有旋转、尺度、平移、扭曲不变性,可实践中发现依然存在着不足,特别对图像亮度、对比度比较敏感。添加了误差反向传播(Error Back Propagation,EBP)学习准则的自适应脉冲耦合神经网络模型能自适应设定模型参数,是脉冲耦合神经网络模型研究的主要内容。特别地,应用这种自适应模型进行特征提取时,能弥补原来PCNN模型对亮度、对比度敏感的缺陷,而且具有一定的泛化能力,有效克服了亮度、对比度对图像识别精度的影响。 展开更多
关键词 自适应 脉冲耦合神经网络 学习准则 时间序列
在线阅读 下载PDF
基于脉冲耦合神经网络的自适应图像滤波 被引量:1
5
作者 李海燕 张榆锋 +1 位作者 施心陵 陈建华 《计算机应用》 CSCD 北大核心 2011年第4期1037-1039,1106,共4页
为有效滤除灰度图像中的椒盐噪声并保留图像的边缘及细节信息,提出一种简化的阈值单向衰减脉冲耦合神经网络(PCNN)点火矩阵自适应图像滤波方法,简化的PCNN结构减少了所需参数并提高了运算速度。该方法通过对PCNN点火矩阵的分析,定位出... 为有效滤除灰度图像中的椒盐噪声并保留图像的边缘及细节信息,提出一种简化的阈值单向衰减脉冲耦合神经网络(PCNN)点火矩阵自适应图像滤波方法,简化的PCNN结构减少了所需参数并提高了运算速度。该方法通过对PCNN点火矩阵的分析,定位出被噪声污染的像素,只对噪声像素进行滤波,因而有效地保留了图像的细节信息;并根据椒盐噪声的特点,动态估计图像的噪声强度,自适应地选择滤波窗口的大小和滤波次数。实验结果表明提出方法较常见的图像降噪方法在滤波效果、自适应性及保留图像细节方面有明显的优势。 展开更多
关键词 脉冲耦合神经网络 点火矩阵 椒盐噪声 图像去噪 自适应滤波
在线阅读 下载PDF
基于自适应脉冲耦合神经网络的行人检测方法 被引量:1
6
作者 王泽胜 董宝田 王爱丽 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第6期74-80,共7页
由于受到光照等因素造成的散斑噪声和灰度不均衡现象的影响,应用计算机视觉技术实现行人的准确检测较为困难.为了提高交通场景信息提取的精准度和自动化水平,文中提出一种基于自适应脉冲耦合神经网络的行人检测方法.首先以像素间"... 由于受到光照等因素造成的散斑噪声和灰度不均衡现象的影响,应用计算机视觉技术实现行人的准确检测较为困难.为了提高交通场景信息提取的精准度和自动化水平,文中提出一种基于自适应脉冲耦合神经网络的行人检测方法.首先以像素间"准欧式"距离为参考,确定神经网络接受区中心神经元与邻域神经元间的点火贡献关系;然后根据图像灰度特征以及邻域综合信息对脉冲产生区的关键控制参数——初始阈值进行设定;最后对获得的初始结果进行多策略形态学修正,从而提取出图像中的行人.实验结果表明,该方法能够在有效提高检测方法自适应程度的同时,显著去除噪声的影响,较好地抑制过分割的问题,检测到相对完整的目标. 展开更多
关键词 智能交通 行人检测 脉冲耦合神经网络 计算机视觉 自适应
在线阅读 下载PDF
一种适用于多模态医学图像融合的自适应脉冲耦合神经网络改进算法 被引量:9
7
作者 于淼 宁春玉 +1 位作者 石乐民 吕冰垚 《科学技术与工程》 北大核心 2020年第22期9116-9121,共6页
针对医学图像融合存在伪影、边缘保持性弱等问题,提出了一种参数自适应的脉冲耦合神经网络(pulse coupled neural network,PCNN)图像融合方法。首先,对源图像通过非下采样Contourlet变换(non-subsampled contourlet transform,NSCT)得... 针对医学图像融合存在伪影、边缘保持性弱等问题,提出了一种参数自适应的脉冲耦合神经网络(pulse coupled neural network,PCNN)图像融合方法。首先,对源图像通过非下采样Contourlet变换(non-subsampled contourlet transform,NSCT)得到一个低通子带和多个尺度多个方向下的带通子带。然后用区域标准差调整连接范围,进而调整突触权重矩阵以及加权系数;用各子带的改进空间频率中方向特征最显著的分量调整连接强度;对于外部激励,低通子带用区域能量和区域方差的线性组合计算,带通方向子带采用改进的拉普拉斯能量和计算。点火映射图的判决遵循取大原则。最后,通过NSCT逆变换得到融合结果图。实验结果表明,此算法能更多地保留源图像的信息,边缘保持能力更强,融合图像对比度高,视觉效果更佳,适用于多种模态医学图像之间的融合。 展开更多
关键词 图像处理 医学图像融合 自适应脉冲耦合神经网络 改进空间频率 区域特征 改进拉普拉斯能量和
在线阅读 下载PDF
自适应注意力选择与脉冲耦合神经网络相融合的沙漠车辆识别 被引量:2
8
作者 张津剑 顾晓东 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第1期56-64,共9页
针对现有车辆识别模型不适用于沙漠背景的不足,提出一种基于自适应四元数注意力选择模型与脉冲耦合神经网络相融合的车辆识别算法.首先建立自适应四元数注意力选择模型,将图像背景、颜色、亮度等多方面信息并行处理计算注意力显著图,并... 针对现有车辆识别模型不适用于沙漠背景的不足,提出一种基于自适应四元数注意力选择模型与脉冲耦合神经网络相融合的车辆识别算法.首先建立自适应四元数注意力选择模型,将图像背景、颜色、亮度等多方面信息并行处理计算注意力显著图,并利用图像缩放与双线性插值提升计算效率;然后将显著图输入脉冲耦合神经网络,利用神经元脉冲传播特性提取感兴趣区域;最后提取区域尺度不变特征并结合多层分类回归树完成目标识别.实验结果表明,该算法计算时间短、区域提取完整、识别虚警率低;以分辨率0.6m×0.6m的沙漠图像为例,文中算法较形态学及支撑向量机算法识别率分别提升了5.8%和15.4%. 展开更多
关键词 自适应注意力选择 脉冲耦合神经网络 沙漠车辆识别 尺度不变特征 多层分类回归树
在线阅读 下载PDF
基于活跃度的脉冲耦合神经网络图像分割 被引量:23
9
作者 郑欣 彭真明 《光学精密工程》 EI CAS CSCD 北大核心 2013年第3期821-827,共7页
针对脉冲耦合神经网络(PCNN)在图像分割中需多次人工调整网络参数的问题,提出了一种基于PCNN模型的图像自动分割方法。分析了图像中影响PCNN参数设置的因素,提出了一种图像自适应分块策略。将图像划分为内部复杂程度相近的子块,克服了... 针对脉冲耦合神经网络(PCNN)在图像分割中需多次人工调整网络参数的问题,提出了一种基于PCNN模型的图像自动分割方法。分析了图像中影响PCNN参数设置的因素,提出了一种图像自适应分块策略。将图像划分为内部复杂程度相近的子块,克服了同一参数无法同时对图像中复杂度差异较大的不同区域准确分割的不足。利用本文提出的局部图像活跃度(ADLA)指标对不同子块自适应地确定PCNN模型参数,有效解决了传统PCNN图像分割时需要人工确定关键参数的问题。最后,采用最大二维Tallis熵准则从分割后的二值结果序列中选择最佳结果。实验表明,本文方法的分割结果轮廓清晰、完整,即使在对比度低、背景呈大范围内连续变化等复杂情况下,也具有优异的性能。与传统PCNN分割方法相比,本文方法能自动、快速、准确地确定PCNN模型参数,且区域一致性测度(UM),区域对比度(CR),形状测度(SM),综合指标(CI)等客观评价的量化指标均优于传统PCNN分割方法12%以上。 展开更多
关键词 脉冲耦合神经网络 自适应参数 局部图像活跃度 图像分割
在线阅读 下载PDF
结合粒子群优化和综合评价的脉冲耦合神经网络图像自动分割 被引量:15
10
作者 张坤华 谭志恒 李斌 《光学精密工程》 EI CAS CSCD 北大核心 2018年第4期962-970,共9页
为了解决脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)在图像分割中多参数设定以及评价准则单一的问题,提出了一种结合粒子群优化算法(Particle Swarm Optimization,PSO)和综合评价准则的PCNN图像自动分割方法。采用单调递增... 为了解决脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)在图像分割中多参数设定以及评价准则单一的问题,提出了一种结合粒子群优化算法(Particle Swarm Optimization,PSO)和综合评价准则的PCNN图像自动分割方法。采用单调递增阈值搜索策略的PCNN改进模型,将PSO优化原理与由交叉熵参数,边缘匹配度和噪点控制度共同构成的综合评价相结合,以综合评价作为粒子的适应度函数,自动寻优获取PCNN图像分割模型的目标时间常数,连接系数以及迭代次数n,从而实现全参数自适应的PCNN图像分割。实验结果表明算法在保证PCNN运行效率下对不同类型图像都能进行正确完整的分割并兼顾纹理细节的保留。从实验数据可以看到,本文算法在综合评价和通用综合指标上均优于其他对比算法,综合评价平均优于其他算法10.5%。客观评价结果与视觉主观评价相一致,分割较理想,算法具有较高的鲁棒性。 展开更多
关键词 脉冲耦合神经网络 粒子群优化 综合评价 参数自适应 图像分割
在线阅读 下载PDF
基于改进型脉冲耦合神经网络图像噪声滤波算法研究 被引量:5
11
作者 靳淑祎 《激光杂志》 北大核心 2016年第1期142-144,共3页
图像信号在获取、传送过程中往往因环境、成像系统等因素的影响,导致图像出现噪声污染严重影响图像有效分割、图像边缘检测以及图像目标提取等一系列图像处理工作。为了提高图像质量,滤除图像噪声,本文提出了一种改进型脉冲耦合神经网... 图像信号在获取、传送过程中往往因环境、成像系统等因素的影响,导致图像出现噪声污染严重影响图像有效分割、图像边缘检测以及图像目标提取等一系列图像处理工作。为了提高图像质量,滤除图像噪声,本文提出了一种改进型脉冲耦合神经网络图像噪声滤波算法。该算法在传统的脉冲耦合神经网络(PCNN)基础上对其进行改进,在传统的PCNN相似神经元能够同步点火对图像噪声进行自适应检测的基础上,对图像噪声采用自适应滤波法以及对前面的滤波结果采用多方向信息中值滤波的方法再进行处理。实验说明本文提出的方法能够提高噪声检测精度,在不损失图像边缘等重要信息的情况下有效对噪声进行滤除,与传统除噪声算法相比具有更好的性能以及适应性。 展开更多
关键词 图像信号 脉冲耦合神经网络 噪声污染 自适应滤波
在线阅读 下载PDF
基于脉冲耦合神经网络的图像分割 被引量:6
12
作者 王爱文 宋玉阶 《计算机科学》 CSCD 北大核心 2017年第4期317-322,共6页
针对传统脉冲耦合神经网络(PCNN)模型在图像分割时需要设置较多参数和不能准确分割低对比度图像的问题,提出一种简化的PCNN模型和改进算法。在简化模型中减少了在传统PCNN模型中需要设置的参数的数量;在改进算法中根据图像像素空间和灰... 针对传统脉冲耦合神经网络(PCNN)模型在图像分割时需要设置较多参数和不能准确分割低对比度图像的问题,提出一种简化的PCNN模型和改进算法。在简化模型中减少了在传统PCNN模型中需要设置的参数的数量;在改进算法中根据图像像素空间和灰度特征自适应设置模型参数,并根据图像灰度直方图求出灰度期望均值作为图像分割阈值,因此该算法无需选择循环迭代次数,只需一次点火过程就能实现图像的有效分割。实验结果表明,该方法能准确分割图像,纹理细节清晰,分割结果优于人工调整参数的PCNN方法和Otsu方法。 展开更多
关键词 脉冲耦合神经网络 图像分割 参数设置 灰度期望均值
在线阅读 下载PDF
基于卷积神经网络的红外与可见光图像融合 被引量:11
13
作者 董安勇 杜庆治 +2 位作者 苏斌 赵文博 于闻 《红外技术》 CSCD 北大核心 2020年第7期660-669,共10页
非下采样剪切波变换(NSST)域中低频子带的融合需要人工给定融合模式,因此未能充分捕获源图像的空间连续性和轮廓细节信息。针对上述问题,提出了基于深度卷积神经网络的红外与可见光图像融合算法。首先,使用孪生双通道卷积神经网络学习N... 非下采样剪切波变换(NSST)域中低频子带的融合需要人工给定融合模式,因此未能充分捕获源图像的空间连续性和轮廓细节信息。针对上述问题,提出了基于深度卷积神经网络的红外与可见光图像融合算法。首先,使用孪生双通道卷积神经网络学习NSST域低频子带的特征来输出衡量子带空间细节信息的特征图。然后,根据高斯滤波处理的特征图设计了基于局部相似性的测量函数来自适应地调整NSST域低频子带的融合模式。最后,根据NSST域高频子带的方差、局部区域能量以及可见度特征来自适应地设置脉冲耦合神经网络参数完成NSST域高频子带的融合。实验结果表明:该算法Q^AB/F指标略弱于对比算法,但SF、SP、SSIM以及VIFF指标分别提高了约50.42%、14.25%、7.91%以及61.67%,有效地解决了低频子带融合模式给定的问题,同时又克服了手动设置PCNN参数的缺陷。 展开更多
关键词 图像融合 卷积神经网络 参数自适应脉冲耦合神经网络 NSST变换
在线阅读 下载PDF
计及多公共充电站差异化耦合关联的电动汽车充电负荷时-空短期预测 被引量:3
14
作者 黄南天 孙赫宏 +3 位作者 王圣元 蔡国伟 张良 王日俊 《中国电机工程学报》 北大核心 2025年第4期1424-1435,I0016,共13页
现有电动汽车充电负荷预测研究,多对单一预测对象开展研究。同时,对充电场景下多公共充电站的充电负荷时-空预测研究较少。公共充电站的充电负荷波动剧烈,较私人充电设施的充电负荷难以预测。为此,提出一个基于自适应时-空图卷积神经网... 现有电动汽车充电负荷预测研究,多对单一预测对象开展研究。同时,对充电场景下多公共充电站的充电负荷时-空预测研究较少。公共充电站的充电负荷波动剧烈,较私人充电设施的充电负荷难以预测。为此,提出一个基于自适应时-空图卷积神经网络的多公共充电站充电负荷时-空短期预测方法。首先,通过快速最大信息系数构建含有日期、气象以及历史负荷特征的多节点特征集。并通过数据自适应图生成,构建动态相似权时-空图,实现多公共充电站空间连接关系重构。然后,构建图卷积层,差异化生成各节点的空间聚合特征,实现全域充电节点差异化特征增强。同时,通过节点自适应参数学习方法学习不同充电节点的充电模式。最后,通过门控循环单元层挖掘空间聚合特征的时域特征。所提出的公共充电站充电负荷时-空预测方法相应的对称平均绝对百分比误差(symmetric mean absolute percentage error,SMAPE)和平均绝对误差(mean absolute error,MAE)分别为12.95%和31.72 kW。 展开更多
关键词 充电负荷时-空短期预测 多公共充电站 神经网络 自适应图生成 差异化时空耦合关联 节点自适应参数学习
在线阅读 下载PDF
基于网格搜索算法的PCNN模型参数自适应 被引量:14
15
作者 李瀚 杨晓峰 +2 位作者 邓红霞 常莎 李海芳 《计算机工程与设计》 北大核心 2017年第1期192-197,共6页
为提高利用脉冲耦合神经网络(pulse coupled neural network,PCNN)模型进行人脸识别时的准确率,并解决利用PCNN进行人脸识别时,模型中多个参数需凭经验设定的问题,提出一种基于脉冲发放强度的PCNN(QD-PCNN)模型和改进的网格搜索算法。QD... 为提高利用脉冲耦合神经网络(pulse coupled neural network,PCNN)模型进行人脸识别时的准确率,并解决利用PCNN进行人脸识别时,模型中多个参数需凭经验设定的问题,提出一种基于脉冲发放强度的PCNN(QD-PCNN)模型和改进的网格搜索算法。QD-PCNN模型在简化的PCNN模型基础上,引入脉冲发放强度,细化模型的输出。改进的网格搜索算法在进行参数寻优时,根据识别对象,在较大范围内搜索,在得到的寻优结果附近区域进行精确搜索。在实验中,将通过改进的网格搜索法得到的参数组合运用到QD-PCNN模型中进行人脸识别,实验结果验证了该方法的有效性。 展开更多
关键词 脉冲耦合神经网络 网格搜索法 参数寻优 人脸识别 脉冲发放强度
在线阅读 下载PDF
基于视觉信息的PCNN参数自适应设定及模型改进 被引量:7
16
作者 赵彦明 《计算机科学》 CSCD 北大核心 2013年第6期291-294,共4页
脉冲耦合神经网络(PCNN)参数决定该模型在数字图像处理领域的应用。现阶段网络参数自适应设定是依据图像统计信息或网络自身结构。基于此,提出基于生物视觉信息的PCNN参数自适应设置方法及模型改进。该方法通过对生物视觉感知理论与PCN... 脉冲耦合神经网络(PCNN)参数决定该模型在数字图像处理领域的应用。现阶段网络参数自适应设定是依据图像统计信息或网络自身结构。基于此,提出基于生物视觉信息的PCNN参数自适应设置方法及模型改进。该方法通过对生物视觉感知理论与PCNN网络性质的分析,揭示了视觉感知理论与PCNN网络参数M、W和β的同源性,给出依据视觉感知模型自适应设定PCNN网络参数W、M和β的方法,并设计出具有生物视觉特征的PCNN改进模型。实验验证了该模型的几何不变性,在基于内容的图像检索领域取得了良好效果。 展开更多
关键词 脉冲耦合神经网络 参数自适应设定 视觉感知理论 几何不变性
在线阅读 下载PDF
联合边缘检测与参数自适应PCNN的遥感图像融合方法 被引量:2
17
作者 石影 贺新光 刘滨瑞 《计算机科学》 CSCD 北大核心 2023年第S02期359-364,共6页
为了提高全色与多光谱图像的融合质量,解决脉冲耦合神经网络(PCNN)参数调整困难和融合图像边缘特征保存不完整的问题,提出了一种联合Canny算子和参数自适应PCNN的遥感图像融合方法。首先对多光谱图像进行HSV颜色空间变换,获取多光谱的V... 为了提高全色与多光谱图像的融合质量,解决脉冲耦合神经网络(PCNN)参数调整困难和融合图像边缘特征保存不完整的问题,提出了一种联合Canny算子和参数自适应PCNN的遥感图像融合方法。首先对多光谱图像进行HSV颜色空间变换,获取多光谱的V亮度分量,再利用Canny算子提取全色图像边缘特征,并根据边缘特征因子对全色图像与多光谱的V分量进行边缘特征融合,得到边缘加强的全色图像。然后对新的全色图像和多光谱V分量分别进行非下采样剪切波变换(NSST),获得相应的高频和低频系数子带。其高频子带采用参数自适应PCNN模型进行融合,其中所有PCNN参数均由输入频段自适应估计,得到具有最优参数的PCNN模型;而低频子带则采用有选择性的加权求和规则进行融合。最后由NSST逆变换得到新的V分量,再经HSV逆变换获得最终的融合图像。将所提方法与其他新近提出的方法进行对比实验,选取7种客观评价指标对融合图像的空间细节和光谱信息进行评价。实验结果表明,所提融合算法在视觉质量以及客观指标评价方面上更有优势,获得了更好的融合性能。 展开更多
关键词 图像融合 脉冲耦合神经网络 CANNY算子 剪切波变换 参数优化
在线阅读 下载PDF
基于复合域多尺度分解的红外偏振图像融合方法 被引量:1
18
作者 陈广秋 魏洲 +1 位作者 段锦 黄丹丹 《吉林大学学报(理学版)》 北大核心 2025年第2期479-491,共13页
针对目前红外偏振融合图像质量差、偏振信息缺失、目标纹理细节不够等问题,提出一种基于复合域多尺度分解的红外偏振图像融合方法.首先,在空间域内利用引导滤波器对源图像进行二尺度分解,得到细节层和基础层,在频域内利用非下采样剪切... 针对目前红外偏振融合图像质量差、偏振信息缺失、目标纹理细节不够等问题,提出一种基于复合域多尺度分解的红外偏振图像融合方法.首先,在空间域内利用引导滤波器对源图像进行二尺度分解,得到细节层和基础层,在频域内利用非下采样剪切波变换对基础层图像进行多尺度多方向分解,得到低频子带图像和高频子带图像;其次,对高频子带采用主成分分析-自适应脉冲耦合神经网络融合规则,对低频子带采用改进的卷积稀疏表示进行系数合并,细节层融合采用基于像素相似度的局部能量加权和选择性融合规则;最后,在复合域内利用逆变换重构出融合图像.实验结果表明,该方法在主观视觉性能和8个客观评价指标上均优于其他对比融合方法,说明该方法在红外偏振图像融合中具有较多优势,能有效提高融合图像的质量. 展开更多
关键词 红外偏振图像融合 非下采样剪切波变换 自适应脉冲耦合神经网络 卷积稀疏表示
在线阅读 下载PDF
一种基于简化PCNN的自适应图像分割方法 被引量:58
19
作者 毕英伟 邱天爽 《电子学报》 EI CAS CSCD 北大核心 2005年第4期647-650,共4页
近年来的研究表明,脉冲耦合神经网络(PulseCoupledNeuralNetwork ,PCNN)可有效地用于图像分割.然而对于不同图像,常需要选取适当的网络参数,以得到有效的分割结果.但是,目前网络参数的选取还主要停留在人工调整和确定阶段,尚无一种能够... 近年来的研究表明,脉冲耦合神经网络(PulseCoupledNeuralNetwork ,PCNN)可有效地用于图像分割.然而对于不同图像,常需要选取适当的网络参数,以得到有效的分割结果.但是,目前网络参数的选取还主要停留在人工调整和确定阶段,尚无一种能够根据图像本身特性自动确定参数的方法,这在很大程度上限制了PCNN的应用.针对这一问题,本文提出了一种基于简化PCNN的自适应图像分割方法,通过利用图像本身空间和灰度特性自动确定网络参数,实现对不同图像的分割.实验结果表明,本文算法可以有效地对不同图像进行自动分割,具有一定的健壮性. 展开更多
关键词 脉冲耦合神经网络(PCNN) 自适应 参数确定 图像自动分割
在线阅读 下载PDF
基于遗传算法参数优化的PCNN红外图像分割 被引量:27
20
作者 曲仕茹 杨红红 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第5期32-37,共6页
构造一种基于遗传算法参数优化的脉冲耦合神经网络(PCNN)红外图像分割算法。该算法首先利用PCNN的全局耦合性和脉冲同步性对输入图像进行点火处理,根据PCNN的输出结果计算熵作为遗传算法的适应度函数,并利用熵的变化量作为遗传算法的收... 构造一种基于遗传算法参数优化的脉冲耦合神经网络(PCNN)红外图像分割算法。该算法首先利用PCNN的全局耦合性和脉冲同步性对输入图像进行点火处理,根据PCNN的输出结果计算熵作为遗传算法的适应度函数,并利用熵的变化量作为遗传算法的收敛依据,对PCNN模型中影响图像分割的参数进行组合优化,结合PCNN生物视觉特性和遗传算法解空间随机搜索能力来寻找关键参数的最优值。将遗传算法和PCNN进行结合可充分发挥二者优势,将本文方法与最大类间方差法(OTSU)、最大熵直方图分割算法和PCNN分割方法进行对比,通过交叉熵、区域对比度等客观指标对分割后的图像进行定量分析,结果表明无论从主观视觉还是客观指标,本文方法分割效果优于其他对比方法。 展开更多
关键词 红外图像 遗传算法 脉冲耦合神经网络 参数优化 图像分割
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部