递推最小二乘(Recursive Least Squares,RLS)算法因其简单、快速的特点,在微振动自适应控制领域被广泛应用。由于微振动主动控制系统中扰动环境的特殊性及复杂性,需要重点考虑微振动控制中所采用的参数自适应算法在参数估计过程中的鲁...递推最小二乘(Recursive Least Squares,RLS)算法因其简单、快速的特点,在微振动自适应控制领域被广泛应用。由于微振动主动控制系统中扰动环境的特殊性及复杂性,需要重点考虑微振动控制中所采用的参数自适应算法在参数估计过程中的鲁棒性。针对多输入多输出(Multiple Input Multiple Output,MIMO)微振动主动控制系统,基于无限冲激响应(Infinite Impulse Response,IIR)滤波器,提出一种结合死区和归一化的MIMO鲁棒参数自适应算法,并给出其详细的算法推导与收敛性分析。在此基础上,通过构建三自由度微振动主动振动控制实验系统,针对单频窄带扰动、双频窄带扰动展开了对比实验分析,相关的实验结果验证了所提出鲁棒参数自适应算法的可行性和鲁棒性。展开更多
已有的轨迹预测方法难以对移动对象运动轨迹进行准确地描述,尤其在复杂且不确定的车载自组织网络(vehicular ad hoc network)(也称车联网)环境中.为了解决这一问题,提出基于变分高斯混合模型(variational Gaussian mixture model,VGMM)...已有的轨迹预测方法难以对移动对象运动轨迹进行准确地描述,尤其在复杂且不确定的车载自组织网络(vehicular ad hoc network)(也称车联网)环境中.为了解决这一问题,提出基于变分高斯混合模型(variational Gaussian mixture model,VGMM)的环境自适应轨迹预测方法 ESATP(environment self-adaptive prediction method based on VGMM).首先,在传统高斯混合模型的基础上使用变分贝叶斯推理近似方法处理混合高斯分布;其次设计变分贝叶斯期望最大化算法学习计算高斯混合模型参数,有效运用参数先验信息得到更高精度预测模型;最后,针对输入轨迹数据特征,使用参数自适应选择算法自动调节参数组合,灵活调整混合高斯分量的个数和轨迹段大小.实验结果表明:所提方法在实验中表现出较高的预测准确性,可应用于车辆移动定位产品中.展开更多
The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean ...The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean square(NLMS) algorithm in EC applications where the input signal is highly correlated. Since the APA with a constant step-size has to make compromise between the performance criteria 1) and 2), a variable step-size APA(VSS-APA) provides a more reliable solution. A nonparametric VSS-APA(NPVSS-APA) is proposed by recovering the background noise within the error signal instead of cancelling the a posteriori errors. The most problematic term of its variable step-size formula is the value of background noise power(BNP). The power difference between the desired signal and output signal, which equals the power of error signal statistically, has been considered the BNP estimate in a rough manner. Considering that the error signal consists of background noise and misalignment noise, a precise BNP estimate is achieved by multiplying the rough estimate with a corrective factor. After the analysis on the power ratio of misalignment noise to background noise of APA, the corrective factor is formulated depending on the projection order and the latest value of variable step-size. The new algorithm which does not require any a priori knowledge of EC environment has the advantage of easier controllability in practical application. The simulation results in the EC context indicate the accuracy of the proposed BNP estimate and the more effective behavior of the proposed algorithm compared with other versions of APA class.展开更多
电网停电计划的排期结果关系到电网安全稳定运行和检修工作的开展,是电网运行方式业务的重要组成。目前,已有计划排期方法缺乏对计划间存在冲突这一场景的考虑,且算法效率较低,难以满足停电计划排期的实际需求。为此,该文以工作量不均...电网停电计划的排期结果关系到电网安全稳定运行和检修工作的开展,是电网运行方式业务的重要组成。目前,已有计划排期方法缺乏对计划间存在冲突这一场景的考虑,且算法效率较低,难以满足停电计划排期的实际需求。为此,该文以工作量不均衡度、停电计划时间调整量、停电经济成本为目标,涵盖计划关联关系判别和优先级排序等过程,建立了考虑冲突的电网停电计划优化求解模型。在此基础上,通过对NSGA II算法(the second generation of non-dominated sorting genetic algorithm,NSGAII)进行性能改进,提出了基于约束的自适应NSGAII算法(constraint-basedadaptive NSGAII,CA-NSGAII),并将其用于模型求解。最后,在IEEE-300输电系统模型中模拟了月停电计划排期过程,验证了该文所提模型与实际情况更为贴近,所提求解算法更加准确高效。展开更多
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied...In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.展开更多
文摘已有的轨迹预测方法难以对移动对象运动轨迹进行准确地描述,尤其在复杂且不确定的车载自组织网络(vehicular ad hoc network)(也称车联网)环境中.为了解决这一问题,提出基于变分高斯混合模型(variational Gaussian mixture model,VGMM)的环境自适应轨迹预测方法 ESATP(environment self-adaptive prediction method based on VGMM).首先,在传统高斯混合模型的基础上使用变分贝叶斯推理近似方法处理混合高斯分布;其次设计变分贝叶斯期望最大化算法学习计算高斯混合模型参数,有效运用参数先验信息得到更高精度预测模型;最后,针对输入轨迹数据特征,使用参数自适应选择算法自动调节参数组合,灵活调整混合高斯分量的个数和轨迹段大小.实验结果表明:所提方法在实验中表现出较高的预测准确性,可应用于车辆移动定位产品中.
文摘The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean square(NLMS) algorithm in EC applications where the input signal is highly correlated. Since the APA with a constant step-size has to make compromise between the performance criteria 1) and 2), a variable step-size APA(VSS-APA) provides a more reliable solution. A nonparametric VSS-APA(NPVSS-APA) is proposed by recovering the background noise within the error signal instead of cancelling the a posteriori errors. The most problematic term of its variable step-size formula is the value of background noise power(BNP). The power difference between the desired signal and output signal, which equals the power of error signal statistically, has been considered the BNP estimate in a rough manner. Considering that the error signal consists of background noise and misalignment noise, a precise BNP estimate is achieved by multiplying the rough estimate with a corrective factor. After the analysis on the power ratio of misalignment noise to background noise of APA, the corrective factor is formulated depending on the projection order and the latest value of variable step-size. The new algorithm which does not require any a priori knowledge of EC environment has the advantage of easier controllability in practical application. The simulation results in the EC context indicate the accuracy of the proposed BNP estimate and the more effective behavior of the proposed algorithm compared with other versions of APA class.
文摘电网停电计划的排期结果关系到电网安全稳定运行和检修工作的开展,是电网运行方式业务的重要组成。目前,已有计划排期方法缺乏对计划间存在冲突这一场景的考虑,且算法效率较低,难以满足停电计划排期的实际需求。为此,该文以工作量不均衡度、停电计划时间调整量、停电经济成本为目标,涵盖计划关联关系判别和优先级排序等过程,建立了考虑冲突的电网停电计划优化求解模型。在此基础上,通过对NSGA II算法(the second generation of non-dominated sorting genetic algorithm,NSGAII)进行性能改进,提出了基于约束的自适应NSGAII算法(constraint-basedadaptive NSGAII,CA-NSGAII),并将其用于模型求解。最后,在IEEE-300输电系统模型中模拟了月停电计划排期过程,验证了该文所提模型与实际情况更为贴近,所提求解算法更加准确高效。
基金Projects(61203020,61403190)supported by the National Natural Science Foundation of ChinaProject(BK20141461)supported by the Jiangsu Province Natural Science Foundation,China
文摘In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.