期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进人工蜂群算法识别结构缺陷问题 被引量:4
1
作者 邓小冬 杜成斌 +1 位作者 金立成 王翔 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2019年第6期856-864,共9页
人工蜂群算法是自然启发下解决优化问题的方法之一,现已与先进的数值分析方法相结合广泛运用于结构的缺陷识别中,然而标准人工蜂群算法仍存在搜索范围不够全面,易长期陷入局部最优等问题。文章在标准人工蜂群算法的基础上,提出了一种新... 人工蜂群算法是自然启发下解决优化问题的方法之一,现已与先进的数值分析方法相结合广泛运用于结构的缺陷识别中,然而标准人工蜂群算法仍存在搜索范围不够全面,易长期陷入局部最优等问题。文章在标准人工蜂群算法的基础上,提出了一种新的改进算法,用混沌序列代替随机数列以改进初始种群,同时为避免算法陷入局部最优造成收敛速率慢等问题,提出了一种能更快跳出局部最优的参数搜索机制,即根据迭代次数自适应地调整参数搜索维数,以增加各点被搜索到的几率;最后将该算法运用到单缺陷和多缺陷的识别过程中。案例结果表明,改进算法结合动力扩展有限元建立的反演分析模型能够准确识别出结构内部所含缺陷的位置和大小,并且提高了搜索效率,可使算法更快达到收敛。 展开更多
关键词 混沌序列 局部最优 改进人工蜂群算法 参数搜索机制 多缺陷识别 拓扑变量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部