期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
增量参数法计算的差分格式
1
作者 褚庆昕 万长宁 梁昌洪 《西安电子科技大学学报》 EI CAS CSCD 北大核心 1992年第3期19-27,共9页
给出了增量参数法中所需的导数计算的任意阶差分格式。通过计算一些实例,表明了采用较高阶差分格式可获得较高的精度。
关键词 微波 谐振器 波导 增量参数 差分
在线阅读 下载PDF
Bogdanov-Takens系统极限环和同宿轨线及分岔 被引量:3
2
作者 黄赪彪 刘佳 《应用数学和力学》 CSCD 北大核心 2008年第9期1083-1088,共6页
讨论Bogdanov-Takens系统极限环、同宿轨线及其关于参数分岔的曲线定量分析.给出这些问题的近似解析表达式的参数增量法;利用时间变换,将极限环和同宿轨线表示为广义谐函数的解析表达式;画出参数与极限环关于振幅稳定性特征指数、极限... 讨论Bogdanov-Takens系统极限环、同宿轨线及其关于参数分岔的曲线定量分析.给出这些问题的近似解析表达式的参数增量法;利用时间变换,将极限环和同宿轨线表示为广义谐函数的解析表达式;画出参数与极限环关于振幅稳定性特征指数、极限环与同宿轨线的相图,以及参数的分岔图等曲线. 展开更多
关键词 BOGDANOV-TAKENS系统 极限环 同宿轨线 分岔图 参数增量法
在线阅读 下载PDF
Optimization of processing parameters for microwave drying of selenium-rich slag using incremental improved back-propagation neural network and response surface methodology 被引量:4
3
作者 李英伟 彭金辉 +2 位作者 梁贵安 李玮 张世敏 《Journal of Central South University》 SCIE EI CAS 2011年第5期1441-1447,共7页
In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of ind... In the non-linear microwave drying process, the incremental improved back-propagation (BP) neural network and response surface methodology (RSM) were used to build a predictive model of the combined effects of independent variables (the microwave power, the acting time and the rotational frequency) for microwave drying of selenium-rich slag. The optimum operating conditions obtained from the quadratic form of the RSM are: the microwave power of 14.97 kW, the acting time of 89.58 min, the rotational frequency of 10.94 Hz, and the temperature of 136.407 ℃. The relative dehydration rate of 97.1895% is obtained. Under the optimum operating conditions, the incremental improved BP neural network prediction model can predict the drying process results and different effects on the results of the independent variables. The verification experiments demonstrate the prediction accuracy of the network, and the mean squared error is 0.16. The optimized results indicate that RSM can optimize the experimental conditions within much more broad range by considering the combination of factors and the neural network model can predict the results effectively and provide the theoretical guidance for the follow-up production process. 展开更多
关键词 microwave drying response surface methodology optimization incremental improved back-propagation neural network PREDICTION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部