个体单体型MSR(minimum SNP removal)问题是指如何利用个体的基因测序片断数据去掉最少的SNP(single-nucleotide polymorphisms)位点,以确定该个体单体型的计算问题.对此问题,Bafna等人提出了时间复杂度为O(2~kn^2m)的算法,其中,m为DNA...个体单体型MSR(minimum SNP removal)问题是指如何利用个体的基因测序片断数据去掉最少的SNP(single-nucleotide polymorphisms)位点,以确定该个体单体型的计算问题.对此问题,Bafna等人提出了时间复杂度为O(2~kn^2m)的算法,其中,m为DNA片断总数,n为SNP位点总数,k为片断中洞(片断中的空值位点)的个数.由于一个Mate-Pair片段中洞的个数可以达到100,因此,在片段数据中有Mate-Pair的情况下,Bafna的算法通常是不可行的.根据片段数据的特点提出了一个时间复杂度为O((n-1)(k_1-1)k_22^(2h)+(k_1+1)^(2h)+nk_2+mk_1)的新算法,其中,k_1为一个片断覆盖的最大SNP位点数(不大于n),k_2为覆盖同一SNP位点的片段的最大数(通常不大于19),h为覆盖同一SNP位点且在该位点取空值的片断的最大数(不大于k_2).该算法的时间复杂度与片断中洞的个数的最大值k没有直接的关系,在有Mate-Pair片断数据的情况下仍然能够有效地进行计算,具有良好的可扩展性和较高的实用价值.展开更多
根据 DNA 测序片段数据的特点,提出了一个时间复杂度为 O(nk_22^(k_2)+mlogm+mk_1)的单体型组装问题 MEC/GI 模型的参数化算法,其中 m 为片段数,n 为单体型的 SNP位点数,k_1 为一个片段覆盖的最大 SNP 位点数(通常小于10),k_2为覆盖同一...根据 DNA 测序片段数据的特点,提出了一个时间复杂度为 O(nk_22^(k_2)+mlogm+mk_1)的单体型组装问题 MEC/GI 模型的参数化算法,其中 m 为片段数,n 为单体型的 SNP位点数,k_1 为一个片段覆盖的最大 SNP 位点数(通常小于10),k_2为覆盖同一 SNP 位点的片段的最大数(通常不大于10)。对于实际 DNA 测序中的片段数据,即使 m 和 n 都相当大,该算法也可以在较短的时间得到 MEC/GI 模型的精确解,具有良好的可扩展性和较高的实用价值。展开更多
Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of...Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness.展开更多
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio...In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.展开更多
To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123,...Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60433020(国家自然科学基金)the Program for New Century Excellent Talents in University of China under Grant No.NCET-05-0683(新世纪优秀人才支持计划)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University of China under Grant No.IRT0661(国家教育部创新团队资助项目)the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No.06C52(湖南省教育厅资助科研项目)
文摘个体单体型MSR(minimum SNP removal)问题是指如何利用个体的基因测序片断数据去掉最少的SNP(single-nucleotide polymorphisms)位点,以确定该个体单体型的计算问题.对此问题,Bafna等人提出了时间复杂度为O(2~kn^2m)的算法,其中,m为DNA片断总数,n为SNP位点总数,k为片断中洞(片断中的空值位点)的个数.由于一个Mate-Pair片段中洞的个数可以达到100,因此,在片段数据中有Mate-Pair的情况下,Bafna的算法通常是不可行的.根据片段数据的特点提出了一个时间复杂度为O((n-1)(k_1-1)k_22^(2h)+(k_1+1)^(2h)+nk_2+mk_1)的新算法,其中,k_1为一个片断覆盖的最大SNP位点数(不大于n),k_2为覆盖同一SNP位点的片段的最大数(通常不大于19),h为覆盖同一SNP位点且在该位点取空值的片断的最大数(不大于k_2).该算法的时间复杂度与片断中洞的个数的最大值k没有直接的关系,在有Mate-Pair片断数据的情况下仍然能够有效地进行计算,具有良好的可扩展性和较高的实用价值.
基金国家自然科学基金重点项目( the Key Project of National Science Foundation of China under Grant No.60433020) 湖南省教育厅资助科研课题( the Research Project of Department of Education of Hunan Province China under Grant No.06C526) 。
文摘根据 DNA 测序片段数据的特点,提出了一个时间复杂度为 O(nk_22^(k_2)+mlogm+mk_1)的单体型组装问题 MEC/GI 模型的参数化算法,其中 m 为片段数,n 为单体型的 SNP位点数,k_1 为一个片段覆盖的最大 SNP 位点数(通常小于10),k_2为覆盖同一 SNP 位点的片段的最大数(通常不大于10)。对于实际 DNA 测序中的片段数据,即使 m 和 n 都相当大,该算法也可以在较短的时间得到 MEC/GI 模型的精确解,具有良好的可扩展性和较高的实用价值。
基金Project(2016YFC0802904)supported by the National Key Research and Development Program of China
文摘Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness.
基金Projects(20976048, 21176072) supported by the National Natural Science Foundation of ChinaProject provided by the Fundamental Research Fund for Central Universities
文摘In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves.
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
基金Project(2009GK2009) supported by Science and Technology Department Funds of Hunan Province,ChinaProject(08C26224302178) supported by Innovation Fund for Technology Based Firms of China
文摘Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.