期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进VGG网络的农作物病害图像识别 被引量:16
1
作者 岳有军 李雪松 +1 位作者 赵辉 王红君 《农机化研究》 北大核心 2022年第6期18-24,共7页
随着计算机技术的飞速发展,使用机器视觉进行农作物病害识别成为了一种趋势。但是,当前农作物病害图像识别研究主要集中在提高其识别精度方面而很少考虑实际复杂自然条件下的鲁棒性研究。在实际复杂自然条件下,噪声和复杂自然条件背景... 随着计算机技术的飞速发展,使用机器视觉进行农作物病害识别成为了一种趋势。但是,当前农作物病害图像识别研究主要集中在提高其识别精度方面而很少考虑实际复杂自然条件下的鲁棒性研究。在实际复杂自然条件下,噪声和复杂自然条件背景会降低识别精度。为此,对VGG网络进行改进,将高阶残差和参数共享反馈子网络添加进VGG网络中,识别实际复杂自然条件下的农作物病害。农作物病害表观的特征表达由高阶残差子网络提供,高阶残差子网络使病害识别的准确率更高;病害图像深层特征中的背景噪声被参数共享反馈子网络削弱,使改进VGG网络具有更强的鲁棒性。实验分析表明:在实际大田环境中,此方法在识别精度和鲁棒性方面比SVM、AlexNET、ResNet-50、VGG-16效果更好。 展开更多
关键词 农作物病害识别 VGG网络 高阶残差网络 参数共享反馈子网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部