To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy u...To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy under different conditions are obtained and the flow stress increases with ascending strain rate and descending temperature.For Arrhenius constitutive equation,each material parameter is set as a constant,which will bring forth large error for predicting flow behavior.In this work,material parameters are fitted as a function of temperature or strain rate based on experimental results and a modified constitutive equation is established for more accurate prediction of flow behavior of 7055 aluminium alloy.The effects of temperature and strain rate on power dissipation and instability are analyzed to establish a processing map of 7055 aluminium alloy.The dominant deformation mechanism for microstructure evolution at different deformation conditions can be determined and high efficiency of power dissipation may be achieved from power dissipation map.Meanwhile,proper processing parameters to avoid flow instability can be easily acquired in instability map.According to the processing map,optimized processing parameters of 7055 aluminium alloy are temperature of 673?723 K and strain rate of 0.01?0.4 s^?1,during which its efficiency of power dissipation is over 30%.Finite element method(FEM)is used to obtain optimized parameter in hot rolling process on the basis of processing map.展开更多
The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The tr...The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The transmitted waveforms and detection threshold are adaptively selected to enhance the tracking performance.The modified Riccati equation is adopted to predict the error covariance which is used as the criterion function,while the optimization problem is solved through the genetic algorithm(GA).The detection probability,false alarm probability and measurement noise covariance are all considered together,which significantly improves the tracking performance of the joint detection and tracking system.Simulation results show that the proposed adaptive waveform-detection threshold joint optimization method outperforms the adaptive threshold method and the fixed parameters method,which will reduce the tracking error.The average reduction of range error between the adaptive joint method and the fixed parameters method is about 0.6 m,while that between the adaptive joint method and the adaptive threshold only method is about 0.3 m.Similar error reduction occurs for the velocity error and acceleration error.展开更多
基金Project(51175257)supported by National Natural Science Foundation of ChinaProject(BK20170785)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(BE2016179)supported by Science and Technology Planning Project of Jiangsu Province,ChinaProject(Kfkt2017-08)supported by Open Research Fund of State Key Laboratory for High Performance Complex Manufacturing,Central South University,China
文摘To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy under different conditions are obtained and the flow stress increases with ascending strain rate and descending temperature.For Arrhenius constitutive equation,each material parameter is set as a constant,which will bring forth large error for predicting flow behavior.In this work,material parameters are fitted as a function of temperature or strain rate based on experimental results and a modified constitutive equation is established for more accurate prediction of flow behavior of 7055 aluminium alloy.The effects of temperature and strain rate on power dissipation and instability are analyzed to establish a processing map of 7055 aluminium alloy.The dominant deformation mechanism for microstructure evolution at different deformation conditions can be determined and high efficiency of power dissipation may be achieved from power dissipation map.Meanwhile,proper processing parameters to avoid flow instability can be easily acquired in instability map.According to the processing map,optimized processing parameters of 7055 aluminium alloy are temperature of 673?723 K and strain rate of 0.01?0.4 s^?1,during which its efficiency of power dissipation is over 30%.Finite element method(FEM)is used to obtain optimized parameter in hot rolling process on the basis of processing map.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(11JJ1010) supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China
文摘The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The transmitted waveforms and detection threshold are adaptively selected to enhance the tracking performance.The modified Riccati equation is adopted to predict the error covariance which is used as the criterion function,while the optimization problem is solved through the genetic algorithm(GA).The detection probability,false alarm probability and measurement noise covariance are all considered together,which significantly improves the tracking performance of the joint detection and tracking system.Simulation results show that the proposed adaptive waveform-detection threshold joint optimization method outperforms the adaptive threshold method and the fixed parameters method,which will reduce the tracking error.The average reduction of range error between the adaptive joint method and the fixed parameters method is about 0.6 m,while that between the adaptive joint method and the adaptive threshold only method is about 0.3 m.Similar error reduction occurs for the velocity error and acceleration error.