期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型
1
作者 林顺富 李毅 +2 位作者 沈运帷 林屹峰 李东东 《电力自动化设备》 EI CSCD 北大核心 2024年第3期127-133,共7页
为了进一步提高低频居民负荷分解模型的分解精度与泛化能力,提出一种基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型,该模型能够深度解析单一电器的功率曲线。基于全卷积去噪自编码器分别构建主回归子任务网络和... 为了进一步提高低频居民负荷分解模型的分解精度与泛化能力,提出一种基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型,该模型能够深度解析单一电器的功率曲线。基于全卷积去噪自编码器分别构建主回归子任务网络和辅助分类子任务网络;在子任务网络中,通过引入卷积块注意力模块自适应分配特征注意力权重,以减小不重要因素在模型训练过程中的影响;将辅助分类子任务网络的输出作为主回归子任务网络输出的门控单元,实现最终的负荷分解。基于公开数据集的算例结果表明,所提负荷分解模型比现有负荷分解模型具有更优的分解精度和泛化能力。 展开更多
关键词 负荷分解 全卷积去噪自编码器 注意力模块 子任务网络 门控单元
在线阅读 下载PDF
一种基于去噪自编码器融合相似度的药物-靶标相互作用预测方法
2
作者 林艳梅 曹爱清 彭昱忠 《广西科学》 北大核心 2024年第5期842-853,共12页
基于机器学习预测潜在药物-靶标相互作用(Drug-Target Interaction, DTI)的方法是一个具有竞争力的研究主题,但当前相关的预测方法和模型在特征学习方面尚有较大的发展空间。本研究基于无监督学习思想提出了一个结合去噪自编码器和分子... 基于机器学习预测潜在药物-靶标相互作用(Drug-Target Interaction, DTI)的方法是一个具有竞争力的研究主题,但当前相关的预测方法和模型在特征学习方面尚有较大的发展空间。本研究基于无监督学习思想提出了一个结合去噪自编码器和分子相似度非线性计算方式的药物-靶标相互作用预测方法。该方法通过去噪自编码器学习和构建药物-靶标相互作用对的特征,并在此基础上融入药物-药物、靶标-靶标之间的相似信息以增强药物-靶标特征的丰富度,从而提高模型的预测能力。在Enzymes、Ion channels、GPCRs和Nuclear receptors等4个基准数据集的比较实验结果表明,本研究所提出的模型显著优于PPAEDTI、AutoDTI++、CMF、Bi-PSSM、ESBoost、CNNDTI、NFSPDTI和EFMSDTI等8个较先进模型,并与另一先进模型aSDAE相当。可见,本研究所提出的模型提高了药物(化合物)与靶标相互作用的预测性能,可为新药研发和药物重新定位提供更优的药物-靶标相互作用预测支持。 展开更多
关键词 药物-靶标相互作用 深度学习 去噪自编码器 新药研发 药物重定位
在线阅读 下载PDF
基于栈式去噪自编码器的遥感图像分类 被引量:12
3
作者 张一飞 陈忠 +1 位作者 张峰 欧阳超 《计算机应用》 CSCD 北大核心 2016年第A02期171-174,188,共5页
针对传统遥感图像分类方法难以取得更高精度的问题,提出一种根据深度学习思想的基于栈式去噪自编码器的遥感图象分类方法。首先,将多个去噪自编码器栈式叠加构成深度网络模型,用无监督的layer-wise方法由下至上训练每一层网络并在训练... 针对传统遥感图像分类方法难以取得更高精度的问题,提出一种根据深度学习思想的基于栈式去噪自编码器的遥感图象分类方法。首先,将多个去噪自编码器栈式叠加构成深度网络模型,用无监督的layer-wise方法由下至上训练每一层网络并在训练数据中加入噪声以得到更为稳健的特征表达;然后,通过反向传播(BP)神经网络对特征进行有监督学习并利用误差反向传播对整个网络参数进行进一步优化得到最终的模型;最后,利用国产高分一号遥感数据进行实验验证。基于栈式去噪自编码器的遥感图像分类方法的总体分类精度和kappa精度分别达到95.7%和95.5%,均高于传统的支持向量机(SVM)和BP神经网络的分类精度。实验结果表明,所提出的方法能有效提高遥感图像的分类精度。 展开更多
关键词 深度学习 栈式去噪自编码器 反向传播神经网络 遥感图像 地物分类
在线阅读 下载PDF
堆叠去噪自编码器在垃圾邮件过滤中的应用 被引量:13
4
作者 李艳涛 冯伟森 《计算机应用》 CSCD 北大核心 2015年第11期3256-3260,3292,共6页
针对垃圾邮件数量日益攀升的问题,提出了将堆叠去噪自编码器应用到垃圾邮件分类中。首先,在无标签数据集上,使用无监督学习方法最小化重构误差,对堆叠去噪自编码器进行贪心逐层预训练,从而获得原始数据更加抽象和健壮的特征表示;然后,... 针对垃圾邮件数量日益攀升的问题,提出了将堆叠去噪自编码器应用到垃圾邮件分类中。首先,在无标签数据集上,使用无监督学习方法最小化重构误差,对堆叠去噪自编码器进行贪心逐层预训练,从而获得原始数据更加抽象和健壮的特征表示;然后,在堆叠去噪自编码器的最上层添加一个分类器后,在有标签数据集上,利用有监督学习方法最小化分类误差,对预训练获得的网络参数进行微调,获得最优化的模型;最后,利用训练完成的堆叠去噪编码器在6个不同的公开数据集上进行测试。将准确率、召回率、更具有平衡性的马修斯相关系数作为实验性能评价标准,实验结果表明,相比支持向量机算法、贝叶斯方法和深度置信网络的分类效果,基于堆叠去噪自编码器的垃圾邮件分类器的准确率都高于95%,马修斯相关系数都大于0.88,在应用中具有更高的准确率和更好的健壮性。 展开更多
关键词 堆叠去噪自编码器 垃圾邮件 分类 支持向量机 贝叶斯方法
在线阅读 下载PDF
基于卷积去噪自编码器的芯片表面弱缺陷检测方法 被引量:13
5
作者 罗月童 卞景帅 +2 位作者 张蒙 饶永明 闫峰 《计算机科学》 CSCD 北大核心 2020年第2期118-125,共8页
芯片表面缺陷会影响芯片的外观和性能,因此表面缺陷检测是芯片生产过程中的重要环节。具有缺陷与背景对比度低、缺陷较小等特点的弱缺陷给传统检测方法带来了挑战。因为近年来深度学习在机器视觉领域展现出了强大的能力,所以文中采用基... 芯片表面缺陷会影响芯片的外观和性能,因此表面缺陷检测是芯片生产过程中的重要环节。具有缺陷与背景对比度低、缺陷较小等特点的弱缺陷给传统检测方法带来了挑战。因为近年来深度学习在机器视觉领域展现出了强大的能力,所以文中采用基于深度学习的方法来研究芯片表面弱缺陷的检测问题。该方法将芯片表面缺陷看作噪音,首先应用卷积去噪自编码器(Convolutional Denoising Auto-encoders,CDAE)重构无缺陷图像,然后用重构的无缺陷图像减去输入图像,获得包含缺陷信息的残差图。因为残差图中已经消除了背景的影响,所以最后可以基于残差图较容易地进行缺陷检测。由于基于CDAE重构芯片背景的无缺陷图像时存在随机噪音,导致弱缺陷可能会湮没在重构噪音中,为此,文中提出了重叠分块策略抑制重构噪音,以便更好地检测弱缺陷。因为CDAE是无监督学习网络,所以训练时无需进行大量的人工数据标注,这进一步增强了该方法的可应用性。通过对真实芯片表面数据进行测试,验证了所提方法在芯片表面检测上的有效性。 展开更多
关键词 芯片表面缺陷 缺陷检测 深度学习 无监督学习 卷积去噪自编码器
在线阅读 下载PDF
基于去噪自编码器和长短时记忆网络的语音测谎算法 被引量:4
6
作者 傅洪亮 雷沛之 《计算机应用》 CSCD 北大核心 2020年第2期589-594,共6页
为进一步提升语音测谎性能,提出了一种基于去噪自编码器(DAE)和长短时记忆(LSTM)网络的语音测谎算法。首先,该算法构建了优化后的DAE和LSTM的并行结构PDL;然后,提取出语音中的人工特征并输入DAE以获取更具鲁棒性的特征,同时,将语音加窗... 为进一步提升语音测谎性能,提出了一种基于去噪自编码器(DAE)和长短时记忆(LSTM)网络的语音测谎算法。首先,该算法构建了优化后的DAE和LSTM的并行结构PDL;然后,提取出语音中的人工特征并输入DAE以获取更具鲁棒性的特征,同时,将语音加窗分帧后提取出的Mel谱逐帧输入到LSTM进行帧级深度特征的学习;最后,将这两种特征通过全连接层及批归一化处理后实现融合,使用softmax分类器进行谎言识别。CSC(Columbia-SRIColorado)库和自建语料库上的实验结果显示,融合特征分类的识别准确率分别为65.18%和68.04%,相比其他对比算法的识别准确率最高分别提升了5.56%和7.22%,表明所提算法可以有效提高谎言识别精度。 展开更多
关键词 去噪自编码器 长短时记忆网络 语音特征 特征融合 测谎
在线阅读 下载PDF
融合深度去噪自编码器和注意力机制的推荐算法 被引量:2
7
作者 张卫国 袁炜轩 周熙然 《计算机应用与软件》 北大核心 2023年第8期283-290,共8页
传统推荐算法无论在特征提取还是相似度计算方面仍存在数据稀疏和大量噪声数据问题,导致推荐效率不高、用户满意度低等问题,由此提出一种融合深度去噪自编码器和注意力机制的推荐算法。将深度去噪自编码器融入到基于项目相似度的协同过... 传统推荐算法无论在特征提取还是相似度计算方面仍存在数据稀疏和大量噪声数据问题,导致推荐效率不高、用户满意度低等问题,由此提出一种融合深度去噪自编码器和注意力机制的推荐算法。将深度去噪自编码器融入到基于项目相似度的协同过滤推荐算法中,同时加入了注意力机制,以惩罚活跃用户对实验结果的影响,既可以挖掘到用户与项目的线性特征又可以学习到用户与项目非线性特征。实验选取了MovieLens和Pinterest两个公开数据集,与传统推荐算法和近些年较先进算法相比,该算法能够显著提升传统推荐算法的性能,并可以缓解传统推荐算法存在的数据稀疏和冷启动问题。 展开更多
关键词 推荐算法 去噪自编码器 注意力机制 协同过滤 数据稀疏
在线阅读 下载PDF
基于堆叠去噪自编码器算法的穿墙人体检测(英文)
8
作者 王为 蒋羽 王丹 《天津师范大学学报(自然科学版)》 CAS 2017年第5期50-54,共5页
超宽带雷达在穿墙人体检测中的应用已经越来越成熟,将堆叠去噪自编码器算法应用于穿墙人体状态的识别和分类中,首先使用无监督学习方法对自编码器网络进行训练,从而获得原始数据更加抽象的特征表示;然后在堆叠去噪自编码器网络的最后一... 超宽带雷达在穿墙人体检测中的应用已经越来越成熟,将堆叠去噪自编码器算法应用于穿墙人体状态的识别和分类中,首先使用无监督学习方法对自编码器网络进行训练,从而获得原始数据更加抽象的特征表示;然后在堆叠去噪自编码器网络的最后一层添加一个分类器.使用有监督的学习方法对网络进行微调,获得最优化的模型;最后,将测试集输入到已经训练好的网络模型上进行测试.实验结果表明,堆叠去噪自编码器深度网络可以对穿墙人体目标状态进行有效地分类识别. 展开更多
关键词 超宽带 堆叠去噪自编码器 分类器
在线阅读 下载PDF
利用深度去噪自编码器深度学习的指令意图理解方法 被引量:5
9
作者 李瀚清 房宁 +1 位作者 赵群飞 夏泽洋 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第7期1102-1107,共6页
提出了一种利用深度去噪自编码器(SDAE)的自然语言指令意图理解方法.根据家庭服务机器人的使用环境和应用场景构建了一个自然语言文本指令语料库,并对语料库中各类指令进行意图标注,从而把文本指令理解问题转化为文本分类问题;在传统的... 提出了一种利用深度去噪自编码器(SDAE)的自然语言指令意图理解方法.根据家庭服务机器人的使用环境和应用场景构建了一个自然语言文本指令语料库,并对语料库中各类指令进行意图标注,从而把文本指令理解问题转化为文本分类问题;在传统的文本向量空间模型的基础上,融合了文本指令的词性信息,定义了一种文本表示模型——词性向量空间模型;将SDAE应用于文本指令意图理解,提取指令的高阶特征;用高斯核支持向量机进行训练和预测,进而实现了自然语言指令的意图理解.在所建语料库上进行多折交叉验证,结果表明指令意图理解平均准确率达到96%以上. 展开更多
关键词 意图理解 向量空间模型 支持向量机 深度去噪自编码器
在线阅读 下载PDF
基于去噪自编码器的极限学习机 被引量:5
10
作者 来杰 王晓丹 +1 位作者 李睿 赵振冲 《计算机应用》 CSCD 北大核心 2019年第6期1619-1625,共7页
针对极限学习机算法(ELM)参数随机赋值降低算法鲁棒性及性能受噪声影响显著的问题,将去噪自编码器(DAE)与ELM算法相结合,提出了基于去噪自编码器的极限学习机算法(DAE-ELM)。首先,通过去噪自编码器产生ELM的输入数据、输入权值与隐含层... 针对极限学习机算法(ELM)参数随机赋值降低算法鲁棒性及性能受噪声影响显著的问题,将去噪自编码器(DAE)与ELM算法相结合,提出了基于去噪自编码器的极限学习机算法(DAE-ELM)。首先,通过去噪自编码器产生ELM的输入数据、输入权值与隐含层参数;然后,以ELM求得隐含层输出权值,完成对分类器的训练。该算法一方面继承了DAE的优点,自动提取的特征更具代表性与鲁棒性,对于噪声有较强的抑制作用;另一方面克服了ELM参数赋值的随机性,增强了算法鲁棒性。实验结果表明,在不含噪声影响下DAE-ELM相较于ELM、PCA-ELM、SAA-2算法,其分类错误率在MNIST数据集中至少下降了5.6%,在Fashion MNIST数据集中至少下降了3.0%,在Rectangles数据集中至少下降了2.0%,在Convex数据集中至少下降了12.7%。 展开更多
关键词 极限学习机 深度学习 去噪自编码器 特征提取 特征降维 鲁棒性
在线阅读 下载PDF
基于深度去噪自编码器的RGB-D视频目标跟踪 被引量:1
11
作者 姜明新 潘志庚 +1 位作者 王兰芳 胡铸鑫 《系统仿真学报》 CAS CSCD 北大核心 2018年第11期4276-4283,共8页
提出了一种基于跨模式特征深度学习的RGB-D视频目标跟踪算法。构建跨模式稀疏去噪自编码器深度学习网络,提取RGB-D视频数据中样本的跨模式特征。将样本的跨模式特征输入到逻辑回归分类器中,获得置信分数,利用逻辑回归分类器的输出来构... 提出了一种基于跨模式特征深度学习的RGB-D视频目标跟踪算法。构建跨模式稀疏去噪自编码器深度学习网络,提取RGB-D视频数据中样本的跨模式特征。将样本的跨模式特征输入到逻辑回归分类器中,获得置信分数,利用逻辑回归分类器的输出来构建观测似然模型。通过粒子滤波算法来实现RGB-D视频数据中的目标跟踪。实验结果表明,提出的视频目标跟踪算法对遮挡、旋转、光照变化等具有较强的鲁棒性,能够稳定的跟踪目标,具有较高的成功率。 展开更多
关键词 跨模式特征 稀疏去噪自编码器 深度学习 RGB-D视频目标跟踪
在线阅读 下载PDF
基于改进的引导图像滤波和深度去噪自编码器的微弱目标跟踪算法 被引量:4
12
作者 赵宗超 李东兴 赵蒙娜 《科学技术与工程》 北大核心 2020年第14期5696-5701,共6页
微弱目标易被周围环境中强烈的噪声干扰,为解决现有目标跟踪算法由于低信噪比导致跟踪准确度低的问题,提出一种将引导图像滤波器和深度去噪自编码器集成到粒子滤波器框架中的跟踪算法。通过引导图像滤波(guided image filter,GIF)算法... 微弱目标易被周围环境中强烈的噪声干扰,为解决现有目标跟踪算法由于低信噪比导致跟踪准确度低的问题,提出一种将引导图像滤波器和深度去噪自编码器集成到粒子滤波器框架中的跟踪算法。通过引导图像滤波(guided image filter,GIF)算法对目标图像进行滤波处理,保留有价值的模板信息并使不准确的背景模板模糊,有效增强目标图像;通过改进的深度学习算法对深度去噪自编码器训练和微调,更好地适应目标外观变化;构造粒子分类器框架根据粒子重要性权重定位目标。实验结果表明,该算法在微弱目标跟踪准确度和抗干扰能力上优于多种现有主流跟踪算法。 展开更多
关键词 目标跟踪 引导图像滤波 深度去噪自编码器 微弱目标
在线阅读 下载PDF
基于增强型去噪自编码器与随机森林的电力系统扰动分类方法 被引量:4
13
作者 李子康 刘灏 +1 位作者 毕天姝 杨奇逊 《现代电力》 北大核心 2022年第2期127-134,I0001,I0002,共10页
实时准确的电力系统扰动分类有利于避免大规模停电事故的发生。然而同步相量测量单元的数据质量问题严重影响其在扰动分类上的应用。针对此问题,提出了一种基于增强型去噪自编码器与随机森林的扰动分类方法。首先,利用长短期记忆构造一... 实时准确的电力系统扰动分类有利于避免大规模停电事故的发生。然而同步相量测量单元的数据质量问题严重影响其在扰动分类上的应用。针对此问题,提出了一种基于增强型去噪自编码器与随机森林的扰动分类方法。首先,利用长短期记忆构造一种增强型去噪自编码器,建立不良数据与正常数据间的映射关系。进一步,根据不同量测的验证损失变化趋势,提出了一种自适应权重多任务去噪网络,能够自适应更新各量测对应的损失函数权重以降低重构误差。最后,利用随机森林对特征进行分类,并通过贝叶斯优化对其超参数调优。基于IEEE 39系统,在不同不良数据比例下对该方法测试,验证所提方法的准确性和快速性。最后,通过现场数据验证了所提方法具有较高的泛化性。 展开更多
关键词 同步相量测量单元 电力系统扰动分类 长短期记忆网络 去噪自编码器 自适应权重 随机森林 贝叶斯优化
在线阅读 下载PDF
去噪自编码器在电阻抗深度成像中的应用
14
作者 韩仲鑫 刘瑞兰 +1 位作者 左瑞雪 钱慧 《现代电子技术》 2023年第20期55-60,共6页
电阻抗成像技术是一种安全无创的医学成像技术,且没有辐射带来的危害,但其逆问题是一个高度不适定的病态非线性问题,获得的重构图像伪影较大。为了得到较为清楚的重建图像,提出一种将传统方法与去噪自编码器相结合的深度成像方法。该方... 电阻抗成像技术是一种安全无创的医学成像技术,且没有辐射带来的危害,但其逆问题是一个高度不适定的病态非线性问题,获得的重构图像伪影较大。为了得到较为清楚的重建图像,提出一种将传统方法与去噪自编码器相结合的深度成像方法。该方法首先使用分裂Bregman方法粗略重建图像,之后采用去噪自编码器对粗略重建图像进行去噪处理。仿真和实测结果表明,针对圆形目标,所提方法能够实现较高精度地去除伪影和精确的形状重建,运算速度快,效果较好。 展开更多
关键词 电阻抗深度成像 去噪自编码器 EIT模型 图像重建 SBM算法 结构相似性
在线阅读 下载PDF
基于去噪图自编码器的无监督社交媒体文本摘要
15
作者 贺瑞芳 赵堂龙 刘焕宇 《软件学报》 北大核心 2025年第5期2130-2150,共21页
社交媒体文本摘要旨在为面向特定话题的大规模社交媒体短文本(称为帖子)产生简明扼要的摘要描述.考虑帖子表达内容短小、非正式等特点,传统方法面临特征稀疏与信息不足的挑战.近期研究利用帖子间的社交关系学习更好的帖子表示并去除冗... 社交媒体文本摘要旨在为面向特定话题的大规模社交媒体短文本(称为帖子)产生简明扼要的摘要描述.考虑帖子表达内容短小、非正式等特点,传统方法面临特征稀疏与信息不足的挑战.近期研究利用帖子间的社交关系学习更好的帖子表示并去除冗余信息,但其忽略了真实社交媒体情景中存在的不可靠噪声关系,使得模型会误导帖子的重要性与多样性判断.因此,提出一种无监督模型DSNSum,其通过去除社交网络中的噪声关系来改善摘要性能.首先,对真实社交关系网络中的噪声关系进行了统计验证;其次,根据社会学理论设计两个噪声函数,并构建一种去噪图自编码器(denoising graph auto-encoder,DGAE),以降低噪声关系的影响,并学习融合可信社交关系的帖子表示;最终,通过稀疏重构框架选择保持覆盖性、重要性及多样性的帖子构成一定长度的摘要.在两个真实社交媒体(Twitter与新浪微博)共计22个话题上的实验结果证明了所提模型的有效性,也为后续相关领域的研究提供了新的思路. 展开更多
关键词 社交媒体文本摘要 图表示学习 图神经网络 去噪自编码器
在线阅读 下载PDF
基于深度自编码器的振动信号盲去噪方法 被引量:5
16
作者 万若青 张纯 +1 位作者 江汇强 黎寅斌 《振动与冲击》 EI CSCD 北大核心 2023年第12期118-125,共8页
为减少传统振动信号去噪方法对信号时、频域先验信息的依赖性,提出了一种基于深度自编码器的振动信号盲去噪方法。在缺少干净信号作为神经网络训练目标的情况下,使用邻近采样及扩展的策略,从原始信号中构造去噪深度神经网络的训练样本对... 为减少传统振动信号去噪方法对信号时、频域先验信息的依赖性,提出了一种基于深度自编码器的振动信号盲去噪方法。在缺少干净信号作为神经网络训练目标的情况下,使用邻近采样及扩展的策略,从原始信号中构造去噪深度神经网络的训练样本对,通过自监督学习得到能对原始信号有效降噪的深度神经网络;并提出适用性评价指标来指导在实际工程应用时信号采样频率的设置。对仿真信号和实测信号的去噪分析表明该方法不依赖于真实信号的先验信息,且对于稳态信号和非稳态信号都有良好的自适应去噪效果。 展开更多
关键词 振动信号 深度学习 去噪自编码器 去噪方法
在线阅读 下载PDF
计及复杂气象耦合特性的模块化去噪变分自编码器多源–荷联合场景生成 被引量:34
17
作者 黄南天 王文婷 +3 位作者 蔡国伟 杨冬锋 黄大为 宋星 《中国电机工程学报》 EI CSCD 北大核心 2019年第10期2924-2933,共10页
气象因素的强随机性与强波动性直接影响新能源出力与用户用电行为。针对基于整体历史数据生成多源-荷联合场景集时难以体现特定气象下的多源-荷概率分布特性的不足,提出一种计及气象因素差异的模块化去噪变分自编码器(modular denoising... 气象因素的强随机性与强波动性直接影响新能源出力与用户用电行为。针对基于整体历史数据生成多源-荷联合场景集时难以体现特定气象下的多源-荷概率分布特性的不足,提出一种计及气象因素差异的模块化去噪变分自编码器(modular denoising variational autoencoder,MDVAE)多源-荷联合场景生成模型。首先,分析风速、辐照、负荷等与气象因素相关性,确定源-荷气象耦合特征集;在此基础上,针对历史气象数据集进行聚类,获得具有不同气象特点的聚类结果;之后,以类内所含日期中风速、辐照、负荷历史数据,构建基于数据驱动的MDVAE联合场景生成模型;最后,通过将生成的风速、辐照转化为风-光出力,构建多源-荷场景。实测数据分析表明,新方法生成场景集能体现不同气象条件下差异性,并能有效提高生成场景集与实测数据间概率分布的相似性。 展开更多
关键词 联合场景生成 气象因素 聚类 数据驱动 去噪变分自编码器
在线阅读 下载PDF
堆栈式混合自编码器的人脸表情识别方法 被引量:7
18
作者 张志禹 王瑞琼 +1 位作者 魏敏敏 周杰 《计算机工程与应用》 CSCD 北大核心 2019年第13期140-144,200,共6页
针对进一步提高人脸表情识别率的问题,采用了一种基于深度学习的堆栈式混合自编码器(Stacked HybridAuto-Encoder,SHAE)的人脸表情识别方法。该方法的结构是由去噪自编码器(Denoising Auto-Encoder,DAE)、稀疏自编码器(Sparse Auto-Enco... 针对进一步提高人脸表情识别率的问题,采用了一种基于深度学习的堆栈式混合自编码器(Stacked HybridAuto-Encoder,SHAE)的人脸表情识别方法。该方法的结构是由去噪自编码器(Denoising Auto-Encoder,DAE)、稀疏自编码器(Sparse Auto-Encoder,SAE)以及自编码器(Auto-Encoder,AE)组合而成的5 层网络结构。为了增加网络的鲁棒性以及泛化能力,采用去噪自编码器对样本进行提取特征,为了对提取的特征进行降维以及进一步提取更抽象的稀疏特征,采用稀疏自编码器进行级联,来对特征进一步处理。训练过程首先由无标签的数据进行预训练和整体微调,对整个结构的权重进行初始化和更新调整,然后使用有标签的数据进行测试训练。在JAFFE和CK+两个数据集上实验显示,相较于单纯的堆栈式去噪自编码或者单纯的堆栈式稀疏自编码,该方法具有更好的识别效果。 展开更多
关键词 人脸表情识别 堆栈式混合自编码器(SHAE) 稀疏自编码器(SAE) 去噪自编码器(DAE)
在线阅读 下载PDF
基于生成对抗网络与自编码器的网络流量异常检测模型 被引量:9
19
作者 郭森森 王同力 慕德俊 《信息网络安全》 CSCD 北大核心 2022年第12期7-15,共9页
近年来,机器学习尤其是深度学习算法在网络流量入侵检测领域得到了广泛应用,数据集样本类别分布情况是影响机器学习算法性能的一个重要因素。针对网络攻击类别多样,现有网络流量数据集类别分布不均的问题,文章提出了一种基于生成对抗网... 近年来,机器学习尤其是深度学习算法在网络流量入侵检测领域得到了广泛应用,数据集样本类别分布情况是影响机器学习算法性能的一个重要因素。针对网络攻击类别多样,现有网络流量数据集类别分布不均的问题,文章提出了一种基于生成对抗网络与自编码器的网络流量异常检测模型。首先,文章使用基于Wasserstein距离的条件生成对抗网络对原始网络流量数据中的少数类别进行重采样;然后,使用堆叠去噪自编码器对重采样后的数据进行重构,获取数据的潜在信息;最后,使用编码器网络结合Softmax网络识别异常网络流量数据。在NSL-KDD入侵检测数据集上进行实验,实验结果表明,文章提出的异常检测模型可以有效提高类别占比不均衡的数据集中数量占比较少的攻击类型的识别率。 展开更多
关键词 深度学习 异常检测 生成对抗网络 去噪自编码器
在线阅读 下载PDF
基于DAE-BLS的锂离子电池剩余使用寿命预测方法 被引量:2
20
作者 张洪生 尚鑫磊 《计算机集成制造系统》 北大核心 2025年第3期1038-1047,共10页
为解决锂离子电池剩余使用寿命(RUL)预测中存在的实际容量难以准确测量、噪声信息影响算法性能等诸多问题,提出一种基于去噪自编码器(DAE)和宽度学习系统(BLS)相结合的预测方法。首先,从电池充放电曲线中提取多个与电池退化高度相关的... 为解决锂离子电池剩余使用寿命(RUL)预测中存在的实际容量难以准确测量、噪声信息影响算法性能等诸多问题,提出一种基于去噪自编码器(DAE)和宽度学习系统(BLS)相结合的预测方法。首先,从电池充放电曲线中提取多个与电池退化高度相关的健康因子(HI),并使用滑动时间窗口制备训练样本。其次,将样本输入DAE进行去噪处理。然后,将经过处理的样本输入BLS,预测电池RUL,并通过调整窗口大小和模型参数,得到最优模型。最后,利用MIT-Stanford电池退化数据集验证该方法的有效性。实验结果表明,相比于已有预测方法,所提方法在预测精度上具有更好的表现。 展开更多
关键词 锂离子电池 剩余使用寿命 健康因子 去噪自编码器 宽度学习系统
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部