飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probab...飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probability Model,DDPM)在视觉领域展现出卓越的样本生成能力,受此启发,本文提出了一种基于马尔可夫转移场(Markov Transfer Field,MTF)的时序数据可视化方法:通过将飞机机动时序数据转换为二维图像,并结合DDPM生成新样本,有效解决样本不平衡问题,同时将时序分类任务转化为图像分类任务。为此,本文设计了一种新型分类网络架构,深度融合MobileNetV3的高效局部特征提取能力与Swin-Transformer的全局注意力机制优势,构建了融合可视化方法、DDPM生成模型与分类网络的飞机机动识别方法。实验结果表明,该方法在飞机机动识别任务中的精度显著优于图像分类领域的其他经典模型。展开更多
针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像...针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像检测和恢复的任务。提出基于提示学习的跨层注意力加权图像去噪分支,指导网络利用退化提示重构清晰的图像;模型主干设计基于上下文的残差采样模块,集成卷积注意力机制,综合目标的局部和全局信息;采用可分离大核多尺度特征提取模块,处理网络多尺度特征;引入小目标的专用检测头,增强小目标的检测精度。实验结果表明,在参数量仅为基线模型60%的情况下,该模型的检测精度提高了2.4个百分点,平均精度(mAP)提高了2.04个百分点,模型检测效果优于其他经典模型,具备卓越的性能。展开更多
文摘飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probability Model,DDPM)在视觉领域展现出卓越的样本生成能力,受此启发,本文提出了一种基于马尔可夫转移场(Markov Transfer Field,MTF)的时序数据可视化方法:通过将飞机机动时序数据转换为二维图像,并结合DDPM生成新样本,有效解决样本不平衡问题,同时将时序分类任务转化为图像分类任务。为此,本文设计了一种新型分类网络架构,深度融合MobileNetV3的高效局部特征提取能力与Swin-Transformer的全局注意力机制优势,构建了融合可视化方法、DDPM生成模型与分类网络的飞机机动识别方法。实验结果表明,该方法在飞机机动识别任务中的精度显著优于图像分类领域的其他经典模型。
文摘针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像检测和恢复的任务。提出基于提示学习的跨层注意力加权图像去噪分支,指导网络利用退化提示重构清晰的图像;模型主干设计基于上下文的残差采样模块,集成卷积注意力机制,综合目标的局部和全局信息;采用可分离大核多尺度特征提取模块,处理网络多尺度特征;引入小目标的专用检测头,增强小目标的检测精度。实验结果表明,在参数量仅为基线模型60%的情况下,该模型的检测精度提高了2.4个百分点,平均精度(mAP)提高了2.04个百分点,模型检测效果优于其他经典模型,具备卓越的性能。