Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her...Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.展开更多
Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and exp...Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and expensive reagents used,the cost of SACs is usually too high to put into practical application.The development of cost-effective and sustainable SACs remains a great challenge.Herein,a low-cost method employing biomass is designed to prepare efficient single-atom Fe-N-C catalysts(SA-Fe-N-C).Benefiting from the confinement effect of porous carbon support and the coordination effect of glucose,SA-Fe-N-C is derived from cheap flour by the two-step pyrolysis.Atomically dispersed Fe atoms exist in the form of Fe-N_(x),which acts as active sites for ORR.The catalyst shows outstanding activity with a half-wave potential(E_(1/2))of 0.86 V,which is better than that of Pt/C(0.84 V).Additionally,the catalyst also exhibits superior stability.The ORR catalyzed by SA-Fe-N-C proceeds via an efficient 4e transfer pathway.The high performance of SA-Fe-N-C also benefits from its porous structure,extremely high specific surface area(1450.1 m^(2)/g),and abundant micropores,which are conducive to increasing the density of active sites and fully exposing them.This work provides a cost-effective strategy to synthesize SACs from cheap biomass,achieving a balance between performance and cost.展开更多
To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising no...To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts.We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid(PIL)of[Hvim]NO_(3) and Fe(NO_(3))_(3),which was thermally calcined at 900℃ to produce a porous FeO_(x),N co-doped carbon material denoted FeO_(x)-N/C.Because the PIL of[Hvim]NO_(3) strongly combines with and disperses Fe^(3+)ions,and NO_(3)−is thermally pyrolyzed to form the porous structure,the FeO_(x)-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L^(−1) KOH and 0.5 mol L^(−1) H_(2)SO_(4) electrolytes.It was used as the catalyst to assemble a zinc-air battery,which had a peak power density of 185 mW·cm^(−2).Its superior electrocatalytic activity,wide pH range,and easy preparation make FeO_(x)-N/C a promising electrocatalyst for fuel cells and metal-air batteries.展开更多
Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the...Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the requirements of practical applications.In the past decades,researchers developed many strategies to fix these issues by improving the structure of catalysts and the newly raised single atom catalysts(SACs)show the high mass activity and stability in FAOR.This review first summarized the reaction mechanism involved in FAOR.The mass activity as well as stability of catalysts reported in the past five years have been outlined.Moreover,the synthetic strategies to improve the catalytic performance of catalysts are also reviewed in this work.Finally,we proposed the research directions to guide the rational design of new FAOR catalysts in the future.展开更多
An Al-3Ti-0.2C-1RE grain refiner was prepared by in-situ reaction method.The microstructure was investigated by optical microscopy(OM),scanning electron microscopy(SEM) equipped with energy-dispersive spectrometry(EDS...An Al-3Ti-0.2C-1RE grain refiner was prepared by in-situ reaction method.The microstructure was investigated by optical microscopy(OM),scanning electron microscopy(SEM) equipped with energy-dispersive spectrometry(EDS) and X-ray diffraction(XRD).The results show that the Al-3Ti-0.2C-1RE grain refiner is composed of α-Al,TiAl3,TiC and Ti2 Al20 Ce phases.Compared with Al-3Ti-0.2C refiner,the morphology of TiAl3 phase is changed and Ti2 Al20 Ce phases form with the addition of RE.Accordingly,the refining performance is improved.The phase forming process of the refiner is as follows: Blocky Ti2 Al20 Ce and fine blocky TiAl3 form in the melt at the initial stage of reaction,then the fine blocky TiAl3 gradually disappears,and the blocky Ti2 Al20 Ce grows bigger with the increase of holding time.The predominant mechanism to synthesize TiC particles is the reaction between high concentration of solute Ti atoms and graphite particles.展开更多
基金supported by National Natural Science Foundation of China(No.523B2070,No.52225606).
文摘Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.
基金Project(52174338)supported by the National Natural Science Foundation of ChinaProjects(2022JJ20086,2021JJ30796)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2023CXQD005)supported by the Central South University Innovation-Driven Research Programme,ChinaProject(23B0841)supported by the Education Department of Hunan Provincial Government,China。
文摘Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and expensive reagents used,the cost of SACs is usually too high to put into practical application.The development of cost-effective and sustainable SACs remains a great challenge.Herein,a low-cost method employing biomass is designed to prepare efficient single-atom Fe-N-C catalysts(SA-Fe-N-C).Benefiting from the confinement effect of porous carbon support and the coordination effect of glucose,SA-Fe-N-C is derived from cheap flour by the two-step pyrolysis.Atomically dispersed Fe atoms exist in the form of Fe-N_(x),which acts as active sites for ORR.The catalyst shows outstanding activity with a half-wave potential(E_(1/2))of 0.86 V,which is better than that of Pt/C(0.84 V).Additionally,the catalyst also exhibits superior stability.The ORR catalyzed by SA-Fe-N-C proceeds via an efficient 4e transfer pathway.The high performance of SA-Fe-N-C also benefits from its porous structure,extremely high specific surface area(1450.1 m^(2)/g),and abundant micropores,which are conducive to increasing the density of active sites and fully exposing them.This work provides a cost-effective strategy to synthesize SACs from cheap biomass,achieving a balance between performance and cost.
文摘To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts.We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid(PIL)of[Hvim]NO_(3) and Fe(NO_(3))_(3),which was thermally calcined at 900℃ to produce a porous FeO_(x),N co-doped carbon material denoted FeO_(x)-N/C.Because the PIL of[Hvim]NO_(3) strongly combines with and disperses Fe^(3+)ions,and NO_(3)−is thermally pyrolyzed to form the porous structure,the FeO_(x)-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L^(−1) KOH and 0.5 mol L^(−1) H_(2)SO_(4) electrolytes.It was used as the catalyst to assemble a zinc-air battery,which had a peak power density of 185 mW·cm^(−2).Its superior electrocatalytic activity,wide pH range,and easy preparation make FeO_(x)-N/C a promising electrocatalyst for fuel cells and metal-air batteries.
基金Project(22102218)supported by the National Natural Science Foundation of ChinaProject(2022RC1110)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2022QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the requirements of practical applications.In the past decades,researchers developed many strategies to fix these issues by improving the structure of catalysts and the newly raised single atom catalysts(SACs)show the high mass activity and stability in FAOR.This review first summarized the reaction mechanism involved in FAOR.The mass activity as well as stability of catalysts reported in the past five years have been outlined.Moreover,the synthetic strategies to improve the catalytic performance of catalysts are also reviewed in this work.Finally,we proposed the research directions to guide the rational design of new FAOR catalysts in the future.
基金Project(51174177)supported by the National Natural Science Foundation of China
文摘An Al-3Ti-0.2C-1RE grain refiner was prepared by in-situ reaction method.The microstructure was investigated by optical microscopy(OM),scanning electron microscopy(SEM) equipped with energy-dispersive spectrometry(EDS) and X-ray diffraction(XRD).The results show that the Al-3Ti-0.2C-1RE grain refiner is composed of α-Al,TiAl3,TiC and Ti2 Al20 Ce phases.Compared with Al-3Ti-0.2C refiner,the morphology of TiAl3 phase is changed and Ti2 Al20 Ce phases form with the addition of RE.Accordingly,the refining performance is improved.The phase forming process of the refiner is as follows: Blocky Ti2 Al20 Ce and fine blocky TiAl3 form in the melt at the initial stage of reaction,then the fine blocky TiAl3 gradually disappears,and the blocky Ti2 Al20 Ce grows bigger with the increase of holding time.The predominant mechanism to synthesize TiC particles is the reaction between high concentration of solute Ti atoms and graphite particles.