期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于集成卷积神经网络的行星齿轮智能诊断方法 被引量:1
1
作者 黄克康 武兵 张志伟 《机械设计与制造》 北大核心 2024年第1期170-174,共5页
针对行星齿轮箱故障振动特征需要预处理、识别困难以及诊断模型收敛速度较慢的问题,提出基于集成卷积神经网络的行星齿轮箱智能故障诊断方法。首先,采用一维卷积对齿轮的原始时域振动信号提取特征,之后通过采用两个弱分类器,根据弱分类... 针对行星齿轮箱故障振动特征需要预处理、识别困难以及诊断模型收敛速度较慢的问题,提出基于集成卷积神经网络的行星齿轮箱智能故障诊断方法。首先,采用一维卷积对齿轮的原始时域振动信号提取特征,之后通过采用两个弱分类器,根据弱分类学习错误率的性能更新样本权重,调整权重后根据训练集训练弱分类器。重复此过程,最后通过设置策略整合弱分类器,形成集成卷积神经网络;建立一个稳定用于行星齿轮箱的智能故障诊断的模型。实验结果表明:集成卷积神经网络能很好地对行星齿轮原始振动信号进行快速诊断。相对于传统卷积神经网络对齿轮原始时域振动故障信号的诊断具有更强的辨识能力和更快的收敛速度;所建立的智能诊断模型可以有效地诊断齿轮不同的故障状态。 展开更多
关键词 集成学习 卷积神经网络 原始振动信号 智能诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部