本文研究了好氧阶段溶解氧(DO)浓度对序批式反应器(SBR)脱氮性能、生物酶活性、微生物群落和氮代谢功能基因的影响。随着好氧阶段DO浓度从5~6 mg/L降低至2~3 mg/L,SBR活性污泥系统的硝化速率和硝化酶活性逐渐降低,而反硝化速率和反硝化...本文研究了好氧阶段溶解氧(DO)浓度对序批式反应器(SBR)脱氮性能、生物酶活性、微生物群落和氮代谢功能基因的影响。随着好氧阶段DO浓度从5~6 mg/L降低至2~3 mg/L,SBR活性污泥系统的硝化速率和硝化酶活性逐渐降低,而反硝化速率和反硝化酶活性逐渐升高。宏基因组学分析表明,SBR活性污泥系统的微生物群落随好氧阶段DO浓度的下降发生明显变化,典型硝化菌属的相对丰度逐渐减少,而多种反硝化菌属的相对丰度逐渐增加。氮代谢过程中,好氧阶段DO浓度的降低抑制了与硝化过程相关的功能基因和关键酶的相对丰度,而促进了与反硝化过程相关的功能基因和关键酶的相对丰度,从基因角度解释了SBR硝化性能降低和反硝化性能提升的原因。通过京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)数据库分析可知,好氧阶段DO浓度的降低对活性污泥系统的碳代谢过程产生明显的抑制作用,而对能量产生和电子转移过程有一定的促进作用。本研究深入探讨了好氧阶段DO浓度对SBR生物脱氮过程的影响,为SBR好氧阶段DO参数设置提供了理论依据。展开更多
应用厌氧序批式反应器(ASBR),接种厌氧颗粒污泥,以葡萄糖模拟废水为基质,探索ASBR反应器的最大容积负荷以及最大负荷特性;并通过处理实际淀粉废水和啤酒废水验证葡萄糖模拟废水阶段所达到的最大容积负荷。实验结果表明:恒温(37.5℃)条件...应用厌氧序批式反应器(ASBR),接种厌氧颗粒污泥,以葡萄糖模拟废水为基质,探索ASBR反应器的最大容积负荷以及最大负荷特性;并通过处理实际淀粉废水和啤酒废水验证葡萄糖模拟废水阶段所达到的最大容积负荷。实验结果表明:恒温(37.5℃)条件下,通过调节碱度促进该反应器建立稳态。经过26 d的反应,葡萄糖模拟废水容积负荷由3 kg COD·m^(-3)·d^(-1)提升至高达8 kg COD·m^(-3)·d^(-1);并且在短的水力停留时间(1 d)条件下,保持COD去除率超过80%。同时电镜扫描结果显示,不同负荷下的颗粒污泥形态差异比较大。负荷越高,颗粒污泥粒径越大,也更密实。同时基于模拟葡萄糖废水试验数据,使用ASBR反应器对淀粉废水和啤酒废水进行处理。同样展现出非常好的去除特性,为ASBR实际应用提供基础数据。展开更多
文摘本文研究了好氧阶段溶解氧(DO)浓度对序批式反应器(SBR)脱氮性能、生物酶活性、微生物群落和氮代谢功能基因的影响。随着好氧阶段DO浓度从5~6 mg/L降低至2~3 mg/L,SBR活性污泥系统的硝化速率和硝化酶活性逐渐降低,而反硝化速率和反硝化酶活性逐渐升高。宏基因组学分析表明,SBR活性污泥系统的微生物群落随好氧阶段DO浓度的下降发生明显变化,典型硝化菌属的相对丰度逐渐减少,而多种反硝化菌属的相对丰度逐渐增加。氮代谢过程中,好氧阶段DO浓度的降低抑制了与硝化过程相关的功能基因和关键酶的相对丰度,而促进了与反硝化过程相关的功能基因和关键酶的相对丰度,从基因角度解释了SBR硝化性能降低和反硝化性能提升的原因。通过京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)数据库分析可知,好氧阶段DO浓度的降低对活性污泥系统的碳代谢过程产生明显的抑制作用,而对能量产生和电子转移过程有一定的促进作用。本研究深入探讨了好氧阶段DO浓度对SBR生物脱氮过程的影响,为SBR好氧阶段DO参数设置提供了理论依据。
文摘应用厌氧序批式反应器(ASBR),接种厌氧颗粒污泥,以葡萄糖模拟废水为基质,探索ASBR反应器的最大容积负荷以及最大负荷特性;并通过处理实际淀粉废水和啤酒废水验证葡萄糖模拟废水阶段所达到的最大容积负荷。实验结果表明:恒温(37.5℃)条件下,通过调节碱度促进该反应器建立稳态。经过26 d的反应,葡萄糖模拟废水容积负荷由3 kg COD·m^(-3)·d^(-1)提升至高达8 kg COD·m^(-3)·d^(-1);并且在短的水力停留时间(1 d)条件下,保持COD去除率超过80%。同时电镜扫描结果显示,不同负荷下的颗粒污泥形态差异比较大。负荷越高,颗粒污泥粒径越大,也更密实。同时基于模拟葡萄糖废水试验数据,使用ASBR反应器对淀粉废水和啤酒废水进行处理。同样展现出非常好的去除特性,为ASBR实际应用提供基础数据。