期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进的TFIDF和压缩自动编码器文本分类研究 被引量:2
1
作者 靖慧 杨振宇 于敏 《齐鲁工业大学学报》 2017年第3期61-66,共6页
为了提高文本分类的分类效果和降低分类的错误率,本文将深度学习中的压缩自动编码器逐层叠加,提出基于改进的TFIDF和堆叠的压缩自动编码器SCAE(Stack Contractive Auto-Encoder)的文本分类思想,将SCAE构成深度神经网络,无监督的训练学... 为了提高文本分类的分类效果和降低分类的错误率,本文将深度学习中的压缩自动编码器逐层叠加,提出基于改进的TFIDF和堆叠的压缩自动编码器SCAE(Stack Contractive Auto-Encoder)的文本分类思想,将SCAE构成深度神经网络,无监督的训练学习文本,提高特征提取的鲁棒性,并使用反向传播算法优化网络中的参数,在计算特征词的权重时,采用本文改进的TFIDF方法。通过实验将CAE和SAE(稀疏自动编码器)进行比较,采用支持向量机(SVM)分类。实验表明,单层的CAE比单层的SAE的分类性能更好,堆叠压缩编码器学习比堆叠的稀疏编码器的分类性能同样要好。 展开更多
关键词 特征提取 压缩自动编码器 稀疏自动编码器 堆叠压缩自动编码器 SVM 文本分类
在线阅读 下载PDF
基于压缩感知和堆叠降噪自动编码器的配电网扰动事件智能溯源方法 被引量:1
2
作者 杨雪 刘继春 《水电能源科学》 北大核心 2022年第2期201-205,共5页
鉴于配电网扰动事件的溯源分析有利于准确了解扰动原因、保障电力系统的安全稳定运行,提出了一种基于压缩感知和堆叠降噪自动编码器的配电网扰动事件智能溯源方法,首先利用压缩感知方法将添加了噪声的原始数据映射到压缩域,在保留扰动... 鉴于配电网扰动事件的溯源分析有利于准确了解扰动原因、保障电力系统的安全稳定运行,提出了一种基于压缩感知和堆叠降噪自动编码器的配电网扰动事件智能溯源方法,首先利用压缩感知方法将添加了噪声的原始数据映射到压缩域,在保留扰动特征的同时提高了分析效率;然后将压缩采样数据作为堆叠降噪自动编码器的输入,通过堆叠降噪自动编码器的特征自学习能力,学习得到扰动数据中的鲁棒性特征,实现特征与不同配电网扰动事件的关联,构造扰动事件智能溯源模型。通过PSCAD/EMTDC中搭建的IEEE 14节点模型获得的仿真数据进行验证,表明所提方法能准确溯源配电网扰动事件。 展开更多
关键词 压缩感知 配电网扰动 堆叠降噪自动编码器 智能溯源
在线阅读 下载PDF
基于深度学习的机器人抓取位置检测方法 被引量:13
3
作者 闫哲 杜学丹 +3 位作者 曹淼 蔡莹皓 鲁涛 王硕 《高技术通讯》 EI CAS 北大核心 2018年第1期58-66,共9页
进行了机器人的智能抓取研究,提出了一种基于深度学习的机器人抓取位置检测方法。该方法以目标物体的多模态特征作为训练数据,采用无监督学习与监督学习相结合的方式对目标物体的最优抓取位置进行学习。在无监督学习阶段,使用压缩自动... 进行了机器人的智能抓取研究,提出了一种基于深度学习的机器人抓取位置检测方法。该方法以目标物体的多模态特征作为训练数据,采用无监督学习与监督学习相结合的方式对目标物体的最优抓取位置进行学习。在无监督学习阶段,使用压缩自动编码器(CAE)对神经网络进行无监督逐层预训练;在监督学习阶段,使用反向传播算法对整个网络进行监督微调。仿真实验结果验证了该方法能够对目标物体的最优抓取位置做出精确的判断。在Universal Robot 5机器人上进行了抓取实验,实验结果表明该方法的抓取成功率较高,能够应用到与机器人抓取相关的任务中。 展开更多
关键词 深度学习 机器人抓取 位置检测 压缩自动编码器(cae)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部