期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进SE-Net和深度可分离残差的高光谱图像分类 被引量:1
1
作者 王燕 王振宇 《兰州理工大学学报》 CAS 北大核心 2024年第2期87-95,共9页
针对目前常见的用于高光谱图像分类的卷积神经网络参数数量多,训练时间长,对样本数量依赖性大的问题,提出一种适用于有限训练样本条件下基于改进压缩激活网络和深度可分离残差的分类网络MDSR&SE-Net.首先使用主成分分析对原始高光... 针对目前常见的用于高光谱图像分类的卷积神经网络参数数量多,训练时间长,对样本数量依赖性大的问题,提出一种适用于有限训练样本条件下基于改进压缩激活网络和深度可分离残差的分类网络MDSR&SE-Net.首先使用主成分分析对原始高光谱图像进行通道降维,然后通过三维卷积神经网络连接多特征残差结构,同时嵌入改进的SE模块提取高光谱图像的空间和光谱细节特征,最后将提取到的特征数据输入Softmax分类器激活分类.为了使网络更加轻量,通过在残差结构中使用深度可分离卷积和引入全局平均池化减少参数数量.实验结果显示,使用有限训练样本在三种常见高光谱数据集上总体分类精度均达到99%以上. 展开更多
关键词 高光谱图像 深度可分离卷积 残差网络 压缩激活网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部