针对无线传感器网络能量有限等特点,将路由策略考虑到投影矩阵的设计中,该文提出了基于数据融合树的压缩感知算法(Compressed Sensing algorithm based on Data Fusion Tree,CS-DFT)。该算法采用稀疏投影矩阵最小化通信消耗,在生成数据...针对无线传感器网络能量有限等特点,将路由策略考虑到投影矩阵的设计中,该文提出了基于数据融合树的压缩感知算法(Compressed Sensing algorithm based on Data Fusion Tree,CS-DFT)。该算法采用稀疏投影矩阵最小化通信消耗,在生成数据融合树的同时减小投影矩阵与稀疏基之间的相关度以保证数据的重构质量。仿真结果表明,该文提出的算法不仅在重构质量和能量消耗之间做到了很好的平衡,同时对于不同稀疏基下的数据也有较高的适应性。展开更多
压缩感知(compressed sensing,CS)技术在采样中完成对数据的压缩,相比传统Nyquist采样方法有效降低采样信号数据量,克服采样端压缩复杂度高,对硬件需求大的缺点。该文通过理论证明指出电网信号基波–谐波稀疏度特性,并基于此特性提出一...压缩感知(compressed sensing,CS)技术在采样中完成对数据的压缩,相比传统Nyquist采样方法有效降低采样信号数据量,克服采样端压缩复杂度高,对硬件需求大的缺点。该文通过理论证明指出电网信号基波–谐波稀疏度特性,并基于此特性提出一种新型基波滤除谱投影梯度算法(SPGFF)。通过西门子Benchmark 0.4 k V电网通用模型实验,结果表明SPG-FF算法比现有方法有效提升了谐波检测精度和信号重构精度,对谐波和间谐波的检测误差分别小于6.8×10-5和6.2×10-3,重构信号的信噪比高于89 d B。展开更多
文摘针对无线传感器网络能量有限等特点,将路由策略考虑到投影矩阵的设计中,该文提出了基于数据融合树的压缩感知算法(Compressed Sensing algorithm based on Data Fusion Tree,CS-DFT)。该算法采用稀疏投影矩阵最小化通信消耗,在生成数据融合树的同时减小投影矩阵与稀疏基之间的相关度以保证数据的重构质量。仿真结果表明,该文提出的算法不仅在重构质量和能量消耗之间做到了很好的平衡,同时对于不同稀疏基下的数据也有较高的适应性。
文摘压缩感知(compressed sensing,CS)技术在采样中完成对数据的压缩,相比传统Nyquist采样方法有效降低采样信号数据量,克服采样端压缩复杂度高,对硬件需求大的缺点。该文通过理论证明指出电网信号基波–谐波稀疏度特性,并基于此特性提出一种新型基波滤除谱投影梯度算法(SPGFF)。通过西门子Benchmark 0.4 k V电网通用模型实验,结果表明SPG-FF算法比现有方法有效提升了谐波检测精度和信号重构精度,对谐波和间谐波的检测误差分别小于6.8×10-5和6.2×10-3,重构信号的信噪比高于89 d B。