期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
嵌套网络模型下的相似图像检索方法 被引量:2
1
作者 倪翠 王朋 +1 位作者 朱元汀 张东 《应用科学学报》 CAS CSCD 北大核心 2022年第3期400-410,共11页
对深度学习领域的稠密卷积网络(dense convolutional network,DenseNet)进行改进,提出了一种嵌套网络模型下的相似图像检索方法。该方法主要通过嵌入压缩和激励网络(squeeze-and-excitation network,SENet),调整原DenseNet网络结构,优... 对深度学习领域的稠密卷积网络(dense convolutional network,DenseNet)进行改进,提出了一种嵌套网络模型下的相似图像检索方法。该方法主要通过嵌入压缩和激励网络(squeeze-and-excitation network,SENet),调整原DenseNet网络结构,优化特征提取模块,从而提高图像检索的准确率。在整个深度学习的过程中,给图像特征通道设置合理的权值,抑制图像中的无效特征,能够进一步提高图像的检索速度。实验结果表明,所提算法能够加强图像有效特征的传递,无论从精度和速度方面均可得到较好的图像检索结果。 展开更多
关键词 稠密卷积网络 压缩和激励网络 嵌套 抑制无效特征 图像检索
在线阅读 下载PDF
基于Tri-SE-CNN的风电机组叶片结冰检测研究
2
作者 孙坚 杨宇兵 《太阳能学报》 CSCD 北大核心 2024年第12期360-369,共10页
针对现有风力机叶片结冰检测方法未能充分利用无标签数据,且分类性能差的问题,提出一种基于改进的三重训练和卷积神经网络(Tri-SE-CNN)的结冰检测方法。首先建立基于最优加权策略的三重训练(Tri-training)模型,对无标签样本的状态进行判... 针对现有风力机叶片结冰检测方法未能充分利用无标签数据,且分类性能差的问题,提出一种基于改进的三重训练和卷积神经网络(Tri-SE-CNN)的结冰检测方法。首先建立基于最优加权策略的三重训练(Tri-training)模型,对无标签样本的状态进行判别,用以扩充训练集;接着将压缩与激励(SE)模块嵌入到卷积神经网络(CNN)中,并用SE-CNN分类器学习扩充后的样本集。结合提取的叶片结冰主控特征,以2017年工业大数据创新竞赛平台中15号和21号风力机数据为例进行仿真,并用云南某风场历史数据进行验证。实验结果表明,所提方法的准确度优于CNN、支持向量机等方法,在15号风力机上达到99.96%,可为风力机叶片结冰预警提供有益参考。 展开更多
关键词 风电机组叶片 无标签数据 卷积神经网络 三重训练 压缩和激励网络 结冰检测
在线阅读 下载PDF
融合残差及通道注意力机制的单幅图像去雨方法 被引量:6
3
作者 张世辉 闫晓蕊 桑榆 《计量学报》 CSCD 北大核心 2021年第1期20-28,共9页
为了去除雨天图像上附着的雨滴并恢复图像的清晰度,提出一种基于深度学习思想结合图像增强技术融合残差及通道注意力机制来实现的单幅图像去雨方法。首先,利用导向滤波将有雨图像分解为平滑基本层和高频细节层;其次,提出自适应Gamma校... 为了去除雨天图像上附着的雨滴并恢复图像的清晰度,提出一种基于深度学习思想结合图像增强技术融合残差及通道注意力机制来实现的单幅图像去雨方法。首先,利用导向滤波将有雨图像分解为平滑基本层和高频细节层;其次,提出自适应Gamma校正算法增强平滑基本层以提高对比度;然后,构建融合残差块和通道注意力机制的深度神经网络实现高频细节层去雨;最后,将去雨后的高频细节层与增强后的平滑基本层融合实现单幅图像去雨功能。实验结果表明:与具有代表性的单幅图像去雨方法相比,所提方法效果较好并可保留更多的图像细节信息。 展开更多
关键词 计量学 单幅图像去雨 图像处理 压缩和激励残差网络 注意力机制 深度学习 GAMMA校正
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部