针对频分双工(Frequency Division Duplexing,FDD)大规模多入多出(Multiple-Input Multiple-Output,MIMO)系统中现有信道状态信息(Channel State Information,CSI)反馈方法复杂度高、反馈精度低的问题,本文提出一种基于深度学习的CSI压...针对频分双工(Frequency Division Duplexing,FDD)大规模多入多出(Multiple-Input Multiple-Output,MIMO)系统中现有信道状态信息(Channel State Information,CSI)反馈方法复杂度高、反馈精度低的问题,本文提出一种基于深度学习的CSI压缩反馈方法.该方法首先采用卷积神经网络(Convolutional Neural Network,CNN)提取信道特征矢量,然后利用最大池化(Maxpooling)网络压缩CSI,最后考虑到大规模MIMO信道存在空间相关性的特点,分别对单用户和多用户场景使用双向长短期记忆(Bidirectional Long Short-Term Memory,Bi-LSTM)网络和双向卷积长短期记忆(Bidirectional Convolutional Long Short-Term Memory,Bi-ConvLSTM)网络对CSI进行重构.本文利用大规模MIMO信道数据对所提的深度学习网络进行离线训练,该网络学习到的信道信息能充分表征信道的状态.仿真结果表明,与已有的典型CSI反馈方法相比,本文所提方法反馈精度更高,运行时间更短,系统性能提升明显.展开更多
文摘在大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统中,基站根据用户反馈的信道状态信息进行自适应编码调制以提高频谱效率,因此需要将用户侧估计到的信道状态信息反馈到基站。由于反馈过程存在的延迟会降低系统性能,因此在考虑延迟的情况下,对基于深度学习的信道状态信息自编码器CsiNet进行改进,使用下行信道的延迟状态信息作为信道状态信息自编码器的期望输出信号来对自编码器进行训练,减少了反馈延迟误差的影响。仿真结果表明,在延迟为1时隙时,所提方案的归一化均方误差(Normalized Mean Square Error,NMSE)仅为自回归-主成分分析方案、基于压缩感知的方案和基于卷积神经网络的CsiNet方案的1/8~1/7,并且随着时隙增加,NMSE性能提升越明显。
文摘针对频分双工(Frequency Division Duplexing,FDD)大规模多入多出(Multiple-Input Multiple-Output,MIMO)系统中现有信道状态信息(Channel State Information,CSI)反馈方法复杂度高、反馈精度低的问题,本文提出一种基于深度学习的CSI压缩反馈方法.该方法首先采用卷积神经网络(Convolutional Neural Network,CNN)提取信道特征矢量,然后利用最大池化(Maxpooling)网络压缩CSI,最后考虑到大规模MIMO信道存在空间相关性的特点,分别对单用户和多用户场景使用双向长短期记忆(Bidirectional Long Short-Term Memory,Bi-LSTM)网络和双向卷积长短期记忆(Bidirectional Convolutional Long Short-Term Memory,Bi-ConvLSTM)网络对CSI进行重构.本文利用大规模MIMO信道数据对所提的深度学习网络进行离线训练,该网络学习到的信道信息能充分表征信道的状态.仿真结果表明,与已有的典型CSI反馈方法相比,本文所提方法反馈精度更高,运行时间更短,系统性能提升明显.