Based on the axial stress-axial strain curves,the effect of fissure angle on the strength and deformation behavior of sandstone specimens containing combined flaws is analyzed.The mechanical parameters of sandstone sp...Based on the axial stress-axial strain curves,the effect of fissure angle on the strength and deformation behavior of sandstone specimens containing combined flaws is analyzed.The mechanical parameters of sandstone specimens containing combined flaws are all lower than that of intact specimen,but the reduction extent is distinctly related to the fissure angle.The results of sandstone specimens containing combined flaws are obtained by the acoustic emission,which can be used to monitor the crack initiation and propagation.The ultimate failure mode and crack coalescence behavior are evaluated for brittle sandstone specimens containing combined flaws.Nine different crack types are identified on the basis of their geometry and crack coalescence mechanism(tensile crack,hole collapse,far-field crack and surface spalling)for combined flaws.The photographic monitoring was also adopted for uniaxial compression test in order to confirm the sequence of crack coalescence in brittle sandstone specimens containing combined flaws,which recorded the real-time crack coalescence process during entire deformation.According to the monitored results,the effect of crack coalescence process on the strength and deformation behavior is investigated based on a detailed analysis for brittle sandstone specimens containing combined flaws by using digital photogrammetry.展开更多
A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The...A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The stress-strain behavior of in-situ soil at a depth of 5 m was investigated by conducting undrained triaxial compression tests using the remolded soil samples. The test results show that the stress-strain relationship of unsaturated cohesive soil is still hyperbolic. The values of parameters a and b given in the model decrease with increasing the confining pressure for soil samples with the same moisture content and increase with increasing the moisture content for soil samples under the same confining pressure. The relationships between parameters a, b and moisture content were studied for confining pressures of 100, 150, 200 and 250 kPa. The comparison between the measured and predicted stress-strain curves for an additional group of soil samples, having a moisture content of 25.4%, shows that the proposed moisture content-dependent hyperbolic model provides a good prediction of stress-strain behavior of unsaturated cohesive soil.展开更多
Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uni...Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.展开更多
基金Project(2014CB046905,2013CB36003)supported by the National Basic Research Program of ChinaProject(NCET-12-0961)supported by the Program for New Century Excellent Talents in University,China+1 种基金Projects(51179189,41272344)supported by the National Natural Science Foundation of ChinaProject(HBKLCIV201201)supported by the Open Research Fund Program of the Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province,China
文摘Based on the axial stress-axial strain curves,the effect of fissure angle on the strength and deformation behavior of sandstone specimens containing combined flaws is analyzed.The mechanical parameters of sandstone specimens containing combined flaws are all lower than that of intact specimen,but the reduction extent is distinctly related to the fissure angle.The results of sandstone specimens containing combined flaws are obtained by the acoustic emission,which can be used to monitor the crack initiation and propagation.The ultimate failure mode and crack coalescence behavior are evaluated for brittle sandstone specimens containing combined flaws.Nine different crack types are identified on the basis of their geometry and crack coalescence mechanism(tensile crack,hole collapse,far-field crack and surface spalling)for combined flaws.The photographic monitoring was also adopted for uniaxial compression test in order to confirm the sequence of crack coalescence in brittle sandstone specimens containing combined flaws,which recorded the real-time crack coalescence process during entire deformation.According to the monitored results,the effect of crack coalescence process on the strength and deformation behavior is investigated based on a detailed analysis for brittle sandstone specimens containing combined flaws by using digital photogrammetry.
基金Project(50608038) supported by the National Natural Science Foundation of China
文摘A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The stress-strain behavior of in-situ soil at a depth of 5 m was investigated by conducting undrained triaxial compression tests using the remolded soil samples. The test results show that the stress-strain relationship of unsaturated cohesive soil is still hyperbolic. The values of parameters a and b given in the model decrease with increasing the confining pressure for soil samples with the same moisture content and increase with increasing the moisture content for soil samples under the same confining pressure. The relationships between parameters a, b and moisture content were studied for confining pressures of 100, 150, 200 and 250 kPa. The comparison between the measured and predicted stress-strain curves for an additional group of soil samples, having a moisture content of 25.4%, shows that the proposed moisture content-dependent hyperbolic model provides a good prediction of stress-strain behavior of unsaturated cohesive soil.
基金Project(51479048) supported by National Natural Science Foundation of China
文摘Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar(SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings.Strain rate sensitivity of the materials is measured in terms of failure modes, stress-strain curves, compressive strength, dynamic increase factor(DIF) and critical strain at peak stress. A significant change in the stress-strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress-strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor(DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.