Valveless piezoelectric pump is widely used in the medical,however,there is a general and difficult problem to be solved:Low vortex and large flow rate are not compatible,resulting in the blood prone to thrombosis dur...Valveless piezoelectric pump is widely used in the medical,however,there is a general and difficult problem to be solved:Low vortex and large flow rate are not compatible,resulting in the blood prone to thrombosis during blood delivery.In this paper,a new valveless piezoelectric(PZT)pump with streamlined flow tubes(streamlined pump)is proposed.The design method and the working principle of the pump are analyzed.The velocity streamlines are simulated,and the results demonstrate that there are no obvious vortexes in the flow tube of the streamlined pump.Five prototype pumps(two cone pumps and three streamlined pumps)are designed and fabricated to perform flow rate and flow resistance experiments.The experimental results illustrate that the maximum flow rate of the streamlined pump is 142 mL/min,which is 179%higher than that of the cone piezoelectric pump,demonstrating that the streamlined pump has a large flow rate performance.This research provides an inspiration for future research on simple structure,low vortex and large flow rate volume-type pumps,and also provides a useful solution for thrombosis preventing.展开更多
A piezoelectric pump with flexible valve has been developed to pump high viscosity cooling liquid in the nanosats thermal control system. The structure of the flexible valve is designed according to the characteristic...A piezoelectric pump with flexible valve has been developed to pump high viscosity cooling liquid in the nanosats thermal control system. The structure of the flexible valve is designed according to the characteristics of the human aortic shape with the aim to simulate the bionic pumping function of the human heart. Dynamic stress-strain features of the flexible valve are analyzed by the finite element method,and the results show that the proposed flexible valve is suitable and functional for the piezoelectric pump. Then the cylinder and diffuser/nozzle piezoelectric pumps based on flexible valves have been developed and fabricated. Experimental results of the output performance indicate that the maximum flow rate of the cylinder piezoelectric pump with flexible valve is 15.38 mL/min,170.77% higher than the diffuser/nozzle piezoelectric pump with flexible valve. The ability of the cylinder piezoelectric pump with flexible valve for transmitting high viscosity liquid has been validated. The piezoelectric pump with flexible valve has potential applications in the nanosats thermal control system.展开更多
基金supported by the National Natural Science Foundation of China (No. 51375227)the Introduction of Talent Research Start-up Fund of Nanjing Institute of Technology(No. YKJ201960).
文摘Valveless piezoelectric pump is widely used in the medical,however,there is a general and difficult problem to be solved:Low vortex and large flow rate are not compatible,resulting in the blood prone to thrombosis during blood delivery.In this paper,a new valveless piezoelectric(PZT)pump with streamlined flow tubes(streamlined pump)is proposed.The design method and the working principle of the pump are analyzed.The velocity streamlines are simulated,and the results demonstrate that there are no obvious vortexes in the flow tube of the streamlined pump.Five prototype pumps(two cone pumps and three streamlined pumps)are designed and fabricated to perform flow rate and flow resistance experiments.The experimental results illustrate that the maximum flow rate of the streamlined pump is 142 mL/min,which is 179%higher than that of the cone piezoelectric pump,demonstrating that the streamlined pump has a large flow rate performance.This research provides an inspiration for future research on simple structure,low vortex and large flow rate volume-type pumps,and also provides a useful solution for thrombosis preventing.
基金supported by the National Natural Science Foundation of China (Nos. 51605200,61973207)the Natural Science Foundation of Shanghai(No.19ZR1474000)+1 种基金the Senior Talent Start-up Foundation of Jiangsu University(No.14JDG145)the Foundation of State Key Laboratory of Mechanics and Control of Mechanical Structures of Nanjing University of Aeronautics and Astronautics(No.MCMS-E-0320G01)。
文摘A piezoelectric pump with flexible valve has been developed to pump high viscosity cooling liquid in the nanosats thermal control system. The structure of the flexible valve is designed according to the characteristics of the human aortic shape with the aim to simulate the bionic pumping function of the human heart. Dynamic stress-strain features of the flexible valve are analyzed by the finite element method,and the results show that the proposed flexible valve is suitable and functional for the piezoelectric pump. Then the cylinder and diffuser/nozzle piezoelectric pumps based on flexible valves have been developed and fabricated. Experimental results of the output performance indicate that the maximum flow rate of the cylinder piezoelectric pump with flexible valve is 15.38 mL/min,170.77% higher than the diffuser/nozzle piezoelectric pump with flexible valve. The ability of the cylinder piezoelectric pump with flexible valve for transmitting high viscosity liquid has been validated. The piezoelectric pump with flexible valve has potential applications in the nanosats thermal control system.