The characteristics of dynamic pressure in an impinging jet were experimentally studied. The instantaneous signals of dynamic pressure resulted from the turbulence in the jetting fluid were measured through a piezoele...The characteristics of dynamic pressure in an impinging jet were experimentally studied. The instantaneous signals of dynamic pressure resulted from the turbulence in the jetting fluid were measured through a piezoelectric sensor and recorded by a computer. The pressure signals at central axial position of the jetting fluid were sampled at different fluid pressure. The measured signals obviously possessed periodical characteristics. After analyzing the signals with FFT method, it was found that there was an inherent frequency in the dynamic pressure signals. The inherent frequency increases with the average velocity of the jetting fluid at the nozzle outlet, which is consistent with the theoretical analysis. It was supposed that the dynamic pressure signals are transformed from the fluctuating fluid velocities resulted from the turbulence in the jetting fluid. The inherent frequency corresponds to the minimum eddy scale in the turbulent jet. The smaller the eddy scale is, the higher the inherent frequency is. Higher velocity of the fluid at the outlet leads to a stronger turbulent strength. The fluctuation velocities with high inherent frequency resulted in a strong shear force field, which enables the fluid to be micro-mixed fleetly and the agglomerate of solid particles to be dispersed effectively.展开更多
In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove vo...In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove volute vortex pump models with different numbers of grooves were developed,and numerical simulation methods were used to calculate the models to study the effects of the volute grooves on the pressure pulsation of a vortex pump.The results show that a bionic groove volute could effectively improve the pressure pulsation of a vortex pump outlet,and reduce the pressure pulsation around the pump’s tongue and other internal points.The pressure pulsation under different conditions is impacted by shaft frequency and blade frequency.The bionic groove structure has little effect on the external characteristics of the pump,but could improve the static pressure,velocity distribution,and vortex structure of the flow field.Additionally,pressure pulsation of the whole vortex pump is reduced.展开更多
文摘The characteristics of dynamic pressure in an impinging jet were experimentally studied. The instantaneous signals of dynamic pressure resulted from the turbulence in the jetting fluid were measured through a piezoelectric sensor and recorded by a computer. The pressure signals at central axial position of the jetting fluid were sampled at different fluid pressure. The measured signals obviously possessed periodical characteristics. After analyzing the signals with FFT method, it was found that there was an inherent frequency in the dynamic pressure signals. The inherent frequency increases with the average velocity of the jetting fluid at the nozzle outlet, which is consistent with the theoretical analysis. It was supposed that the dynamic pressure signals are transformed from the fluctuating fluid velocities resulted from the turbulence in the jetting fluid. The inherent frequency corresponds to the minimum eddy scale in the turbulent jet. The smaller the eddy scale is, the higher the inherent frequency is. Higher velocity of the fluid at the outlet leads to a stronger turbulent strength. The fluctuation velocities with high inherent frequency resulted in a strong shear force field, which enables the fluid to be micro-mixed fleetly and the agglomerate of solid particles to be dispersed effectively.
基金Projects(51779226,51476144)supported by the National Natural Science Foundation of ChinaProject(2017C31025)supported by Zhejiang Province Department Public Welfare Industrial Projects,China+1 种基金Project(2016M601736)supported by Postdoctoral Science Foundation of ChinaProject(1601028C)supported by Postdoctoral Research Funding Plan in Jiangsu Province,China
文摘In order to reduce pressure pulsation of vortex pumps,the mantis shrimp was chosen as biological prototype and a bionic engineering model was developed from its abdominal segment grooves.Bionic mantis shrimp groove volute vortex pump models with different numbers of grooves were developed,and numerical simulation methods were used to calculate the models to study the effects of the volute grooves on the pressure pulsation of a vortex pump.The results show that a bionic groove volute could effectively improve the pressure pulsation of a vortex pump outlet,and reduce the pressure pulsation around the pump’s tongue and other internal points.The pressure pulsation under different conditions is impacted by shaft frequency and blade frequency.The bionic groove structure has little effect on the external characteristics of the pump,but could improve the static pressure,velocity distribution,and vortex structure of the flow field.Additionally,pressure pulsation of the whole vortex pump is reduced.