异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网...异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网络(convolutional neural network,CNN)与双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)的混合模型,用于儿童异常肺音的分类方法。该方法通过CNN对MFCC特征进行空间特性提取,利用BiLSTM对MFCC音频特征进行时序特性提取,建立了BCNnet(BILSTM CNN network)模型。文章收集并建立了一个儿童肺音数据集,在该数据集上,所提方法平均准确率可达75.3%,与以声谱图为输入的CNN(并行池化)模型相比,准确率提高了3.7个百分点,且在模型大小和识别速度上均有改善。展开更多
基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现相量测量单位(PMU)的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优...基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现相量测量单位(PMU)的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优布点上的时间序列特征,提出了一种将改进卷积神经网络(improved convolutional neural network,ICNN)与双向长短时记忆网络(bidirectional long short term memory network,BiLSTM)进行融合的评估方法。该方法首先利用BiLSTM提取电压、相角以及有功功率三种基本电气量的时间序列特征,随后通过卷积和池化操作对数据进行进一步的数据挖掘,最后利用轻量梯度提升机完成对数据的分类。为了避免出现过拟合现象,该方法还通过正则化、Dropout等方式提升模型的泛化性能。在新英格兰10机39节点上的算例表明,该方法能利用基本电气量数据进行暂态稳定评估,且在复杂条件下仍能保持较好的评估性能。展开更多
针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,...针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,CNN-BiLSTM)进行人体活动识别(human activity recognition,HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(convolutional neural networks,CNN)自动提取人体活动数据的特征,再通过双向长短时记忆网络(bi-directional long-short term memory,BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明:基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。展开更多
表面肌电信号(Surface Electromyography,sEMG)常用于预测人体意图行为,是一种不平稳、非周期、含有噪声的生物电信号,容易受工频干扰、环境干扰等影响,导致对其进行预测存在一定难度。对此,提出了一种基于变分模态分解(Variatio-nal Mo...表面肌电信号(Surface Electromyography,sEMG)常用于预测人体意图行为,是一种不平稳、非周期、含有噪声的生物电信号,容易受工频干扰、环境干扰等影响,导致对其进行预测存在一定难度。对此,提出了一种基于变分模态分解(Variatio-nal Mode Decomposition,VMD)和改进粒子群优化(Particle Swarm Optimization,PSO)算法的复合神经网络模型(Composite Neural Network Model,CNNM)。该模型结合了长短期记忆网络(Long-Short Term Memory,LSTM)、卷积神经网络(Convolutional Neural Networks,CNN)和双向长短期记忆网络(Bidirectional Long Short Term Memory,BiLSTM)。首先对PSO算法进行改进以优化VMD的参数,通过VMD处理sEMG信号,提出希尔伯特能量法,对分解后的分量进行加权重构,降低信号复杂性并保留关键特征。然后利用LSTM方法从sEMG信号中提取时间特征,利用CNN方法进一步提取空间特征,并通过注意力机制强化对关键信息的提取,最后输入BiLSTM中进行预测识别。实验结果表明,该模型的预测准确率可达99.9%,相较于其他模型提高了3%~8%,并通过消融实验验证了各模块的作用。该研究旨在提高手势动作的预测识别精度,为康复训练机器人的控制提供有效的解决方案。展开更多
针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输...针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。展开更多
文摘基于机器学习方法的暂态稳定评估已成为电力系统分析与控制领域的热点,由于实际系统中存在不能实现相量测量单位(PMU)的全面覆盖以及数据采集存在噪声的问题,使得传统机器学习方法的评估性能受到较大限制。针对此,构建了一种在PMU最优布点上的时间序列特征,提出了一种将改进卷积神经网络(improved convolutional neural network,ICNN)与双向长短时记忆网络(bidirectional long short term memory network,BiLSTM)进行融合的评估方法。该方法首先利用BiLSTM提取电压、相角以及有功功率三种基本电气量的时间序列特征,随后通过卷积和池化操作对数据进行进一步的数据挖掘,最后利用轻量梯度提升机完成对数据的分类。为了避免出现过拟合现象,该方法还通过正则化、Dropout等方式提升模型的泛化性能。在新英格兰10机39节点上的算例表明,该方法能利用基本电气量数据进行暂态稳定评估,且在复杂条件下仍能保持较好的评估性能。
文摘针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,CNN-BiLSTM)进行人体活动识别(human activity recognition,HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(convolutional neural networks,CNN)自动提取人体活动数据的特征,再通过双向长短时记忆网络(bi-directional long-short term memory,BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明:基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。
文摘表面肌电信号(Surface Electromyography,sEMG)常用于预测人体意图行为,是一种不平稳、非周期、含有噪声的生物电信号,容易受工频干扰、环境干扰等影响,导致对其进行预测存在一定难度。对此,提出了一种基于变分模态分解(Variatio-nal Mode Decomposition,VMD)和改进粒子群优化(Particle Swarm Optimization,PSO)算法的复合神经网络模型(Composite Neural Network Model,CNNM)。该模型结合了长短期记忆网络(Long-Short Term Memory,LSTM)、卷积神经网络(Convolutional Neural Networks,CNN)和双向长短期记忆网络(Bidirectional Long Short Term Memory,BiLSTM)。首先对PSO算法进行改进以优化VMD的参数,通过VMD处理sEMG信号,提出希尔伯特能量法,对分解后的分量进行加权重构,降低信号复杂性并保留关键特征。然后利用LSTM方法从sEMG信号中提取时间特征,利用CNN方法进一步提取空间特征,并通过注意力机制强化对关键信息的提取,最后输入BiLSTM中进行预测识别。实验结果表明,该模型的预测准确率可达99.9%,相较于其他模型提高了3%~8%,并通过消融实验验证了各模块的作用。该研究旨在提高手势动作的预测识别精度,为康复训练机器人的控制提供有效的解决方案。
文摘针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。