为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim...为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。展开更多
U-Net在图像分割领域取得了巨大成功,然而卷积和下采样操作导致部分位置信息丢失,全局和长距离的语义交互信息难以被学习,并且缺乏整合全局和局部信息的能力。为了提取丰富的局部细节和全局上下文信息,提出了一个基于卷积胶囊编码器和...U-Net在图像分割领域取得了巨大成功,然而卷积和下采样操作导致部分位置信息丢失,全局和长距离的语义交互信息难以被学习,并且缺乏整合全局和局部信息的能力。为了提取丰富的局部细节和全局上下文信息,提出了一个基于卷积胶囊编码器和局部共现的医学图像分割网络MLFCNet(network based on convolution capsule encoder and multi-scale local feature co-occurrence)。在U-Net基础上引入胶囊网络模块,学习目标位置信息、局部与全局的关系。同时利用提出的注意力机制保留网络池化层丢弃的信息,并且设计了新的多尺度特征融合方法,从而捕捉全局信息并抑制背景噪声。此外,提出了一种新的多尺度局部特征共现算法,局部特征之间的关系能够被更好地学习。在两个公共数据集上与九种方法进行了比较,相比于性能第二的模型,该方法的mIoU在肝脏医学图像中提升了4.7%,Dice系数提升了1.7%。在肝脏医学图像和人像数据集上的实验结果表明,在相同的实验条件下,提出的网络优于U-Net和其他主流的图像分割网络。展开更多
文摘为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。
文摘U-Net在图像分割领域取得了巨大成功,然而卷积和下采样操作导致部分位置信息丢失,全局和长距离的语义交互信息难以被学习,并且缺乏整合全局和局部信息的能力。为了提取丰富的局部细节和全局上下文信息,提出了一个基于卷积胶囊编码器和局部共现的医学图像分割网络MLFCNet(network based on convolution capsule encoder and multi-scale local feature co-occurrence)。在U-Net基础上引入胶囊网络模块,学习目标位置信息、局部与全局的关系。同时利用提出的注意力机制保留网络池化层丢弃的信息,并且设计了新的多尺度特征融合方法,从而捕捉全局信息并抑制背景噪声。此外,提出了一种新的多尺度局部特征共现算法,局部特征之间的关系能够被更好地学习。在两个公共数据集上与九种方法进行了比较,相比于性能第二的模型,该方法的mIoU在肝脏医学图像中提升了4.7%,Dice系数提升了1.7%。在肝脏医学图像和人像数据集上的实验结果表明,在相同的实验条件下,提出的网络优于U-Net和其他主流的图像分割网络。