期刊文献+
共找到337篇文章
< 1 2 17 >
每页显示 20 50 100
卷积自编码器和残差循环神经网络在刀具剩余寿命预测中的应用 被引量:1
1
作者 周学良 潘晓明 吴瑶 《机械科学与技术》 北大核心 2025年第5期806-813,共8页
针对刀具剩余寿命预测问题,提出了一种将一维卷积自编码器(One-dimensional convolutional auto encoder,1DCAE)和残差双向门控循环单元(Residual bidirectional gated recurrent unit,RBGRU)相结合的预测方法。通过1DCAE连续卷积池化... 针对刀具剩余寿命预测问题,提出了一种将一维卷积自编码器(One-dimensional convolutional auto encoder,1DCAE)和残差双向门控循环单元(Residual bidirectional gated recurrent unit,RBGRU)相结合的预测方法。通过1DCAE连续卷积池化和反卷积上采样方法获取工况信号的深层特征,并将其与分段后的原始信号融合后作为刀具剩余寿命的表征;同时结合残差网络的思想对双向门控循环单元(Bidirectional gated recurrent unit,BiGRU)的结构进行改进以增强对时序特征的捕获能力。实验结果表明,该方法比其他算法具有更高的预测精度。 展开更多
关键词 刀具 剩余寿命预测 卷积自编码器 残差门控循环单元 特征融合
在线阅读 下载PDF
基于多尺度卷积自编码器的船舶逆变器故障诊断 被引量:1
2
作者 崔博文 张思远 《舰船科学技术》 北大核心 2025年第3期135-140,共6页
为实现对船舶逆变器的有效维护,确保船舶逆变器模块的正常运行,提出一种基于多尺度特征融合和降噪卷积自编码器的船舶逆变器开路故障诊断方法。可以直接对一维原始电流数据自适应地提取数据特征,降低信号内的噪声,实现端到端的故障诊断... 为实现对船舶逆变器的有效维护,确保船舶逆变器模块的正常运行,提出一种基于多尺度特征融合和降噪卷积自编码器的船舶逆变器开路故障诊断方法。可以直接对一维原始电流数据自适应地提取数据特征,降低信号内的噪声,实现端到端的故障诊断。首先,利用数据增强方法来增强数据集;其次,根据数据特点设计可以提取局部细节和整体结构信息的多尺度卷积特征融合模块,并在编码器中引入该模块,形成特征提取模型;最后,利用全连接神经网络对模型输出的数据特征进行分类,根据分类结果实现故障诊断。实验结果表明,所提出的方法具有优越的数据特征提取性能及噪声鲁棒性能,可以实现船舶逆变器开关器件开路故障诊断。 展开更多
关键词 船舶逆变器 故障诊断 多尺度特征融合 卷积自编码器
在线阅读 下载PDF
基于卷积自编码器的综合传动异常检测研究
3
作者 贾然 吴傲 +3 位作者 陈涛 郝乃芃 王立勇 赵津 《湖南大学学报(自然科学版)》 北大核心 2025年第10期99-107,共9页
针对特种车辆工作过程中综合传动装置的数据复杂性、正常与异常数据不平衡、传统统计学方法对综合传动传感器监测数据异常波动的漏报率和误报率较高等问题,提出一种基于注意力机制卷积自编码器(attention mechanism convolutional autoe... 针对特种车辆工作过程中综合传动装置的数据复杂性、正常与异常数据不平衡、传统统计学方法对综合传动传感器监测数据异常波动的漏报率和误报率较高等问题,提出一种基于注意力机制卷积自编码器(attention mechanism convolutional autoencoder,ACA)与支持向量机(support vector machine,SVM)耦合的ACA-SVM异常数据检测方法.根据履带装甲实车运行数据,对传感器监测进行数据预处理,采用注意力机制识别并聚焦检测数据中的核心元素,利用卷积自编码器(convolutional autoencoder,CAE)将原始数据降维提取特征,实现数据检测并得到重构误差和特征值.通过支持向量机进行分类和计算训练集数据样本的异常分数并与传统异常检测模型进行检测效果对比实验.实验结果表明,所提ACA-SVM方法在特种车辆综合传动数据上比CAE、门控循环单元(gated recurrent unit,GRU)等模型检测效果更优异,异常检测准确率为97.2%,F_(1)值为0.976. 展开更多
关键词 异常检测 传动装置 漏油故障 卷积自编码器 注意力机制
在线阅读 下载PDF
基于非插值卷积自编码器的湍流降阶模型
4
作者 武频 张波 +1 位作者 宋超 周铸 《西北工业大学学报》 北大核心 2025年第1期149-153,共5页
降阶模型通过代理数值模拟,有效降低了大规模流体动力学问题的计算成本。其中,降维和重构方法是降阶模型的关键组成部分。传统的本征正交分解基于线性映射,常常在处理流场时损失大量非线性流动信息。全连接结构的自编码器在处理较大规... 降阶模型通过代理数值模拟,有效降低了大规模流体动力学问题的计算成本。其中,降维和重构方法是降阶模型的关键组成部分。传统的本征正交分解基于线性映射,常常在处理流场时损失大量非线性流动信息。全连接结构的自编码器在处理较大规模流场网格时会导致模型参数爆炸,难以有效训练。为了获得均匀流场快照,卷积自编码器一般需要在流场上进行均匀插值,这通常伴随着插值误差和不必要的时间成本。为解决这些问题,提出了一种创新的非插值卷积自编码器,该模型可以提取流场的非线性特征,降低参数量,避免插值误差和额外的计算成本。在二维圆柱绕流算例上,降维重构的均方根误差均约为1×10^(-3),速度云图和绝对误差云图展示了非插值卷积自编码器在重构方面的卓越性能。 展开更多
关键词 降阶模型 非插值卷积自编码器 降维重构
在线阅读 下载PDF
基于小波基—改进卷积自编码器的故障诊断方法
5
作者 王娜 刘佳林 王子从 《兵器装备工程学报》 北大核心 2025年第8期351-360,共10页
针对故障诊断中,传统小波包分解(wave packet decomposition,WPD)提取故障特征主观性强、且模型诊断效率低的问题,提出了一种基于小波基—改进卷积自编码器的故障诊断方法。基于能量—泰尔指数准则来准确选择小波基函数,以改善传统小波... 针对故障诊断中,传统小波包分解(wave packet decomposition,WPD)提取故障特征主观性强、且模型诊断效率低的问题,提出了一种基于小波基—改进卷积自编码器的故障诊断方法。基于能量—泰尔指数准则来准确选择小波基函数,以改善传统小波包基函数确定主观性较强的缺点,获得初始故障特征;引入无阈值递归图(thresholdless recurrence plot,TRP),并与小波包分解相结合,从空间角度进一步增强故障特征的显著性,并减少冗余特征;将softmax分类器嵌入到卷积自编码器(convolutional autoencoder,CAE)中,并构建新的损失函数,来确保参数训练的准确性,并通过一次迭代学习即可实现参数更新,进一步提高了模型的诊断效率。通过在CWRU数据集和JNU数据集上的仿真,结果表明,所提方法的诊断准确率分别为99.67%和98.33%,相比于其他方法具有更好的诊断精度及效率。 展开更多
关键词 故障诊断 小波包分解 泰尔指数 无阈值递归图 卷积自编码器 损失函数
在线阅读 下载PDF
融合注意力的卷积自编码器视频异常检测方法
6
作者 宋雪桦 车雷 +2 位作者 张星 茆玉欣 张海侠 《江苏大学学报(自然科学版)》 北大核心 2025年第6期677-684,共8页
针对目前视频异常检测方法未充分利用视频序列中的上下文语义信息的问题,提出一种融合注意力的卷积自编码器视频异常检测方法.首先,模型采用抽取帧预测的方式,并利用基于Inception模块的卷积自编码器提取输入视频序列中不同尺度的特征信... 针对目前视频异常检测方法未充分利用视频序列中的上下文语义信息的问题,提出一种融合注意力的卷积自编码器视频异常检测方法.首先,模型采用抽取帧预测的方式,并利用基于Inception模块的卷积自编码器提取输入视频序列中不同尺度的特征信息.其次,为学习视频帧中运动对象和静止背景的交互信息,引入位置注意力和通道注意力.最后,在卷积自编码器中加入记忆增强模块来限制模型泛化性,并引入潜在损失函数来进一步增大异常事件的重构误差.推导了异常得分计算,给出了异常检测数据集.为验证所提出方法的有效性,进行了异常行为定性分析、模型性能比较试验、记忆项更新阈值试验以及消融试验.结果表明:该方法能有效检测视频中的异常事件,并具有较高的检测精度,在UCSD Ped2、CUHK Avenue和ShanghaiTech数据集上的AUC值分别为97.7%、88.9%和73.8%. 展开更多
关键词 视频异常检测 深度学习 卷积自编码器 注意力机制 记忆增强 抽取帧预测
在线阅读 下载PDF
基于联合卷积变分自编码器和预测器的UWB定位算法
7
作者 古玉锋 李真 +1 位作者 高世椿 黎程山 《仪器仪表学报》 北大核心 2025年第1期182-192,共11页
某室内三线自动驾驶轨道交通系统使用了超宽带(UWB)定位系统,车辆的高精度定位是提高其运行可靠性和调度效率的关键技术。基于UWB定位精度的分析,提出了一种基于联合卷积变分自编码器和预测器(VAE-CNN)的非视距鉴别、测距误差补偿与神... 某室内三线自动驾驶轨道交通系统使用了超宽带(UWB)定位系统,车辆的高精度定位是提高其运行可靠性和调度效率的关键技术。基于UWB定位精度的分析,提出了一种基于联合卷积变分自编码器和预测器(VAE-CNN)的非视距鉴别、测距误差补偿与神经网络定位误差补偿的三步UWB定位算法。首先,采集标签与基站的测距误差和信道脉冲响应(CIR)数据,训练VAE-CNN模型,根据原始CIR和重建CIR的可信度阈值剔除非视距测距值。其次,根据预测器的预测误差补偿原始测距值,使用最小二乘法计算坐标和该坐标相对于各个基站坐标的方向余弦,训练神经网络用于拟合定位误差与方向余弦的关系。在已公开的包含视距和非视距的UWB测距值和CIR数据集上,验证了VAE-CNN模型的非视距鉴别能力,评估了基于VAE-CNN模型的非视距鉴别和测距误差补偿对定位精度的提升效果;在不同测距方差下,基于车辆模拟运行轨迹,评估了定位误差补偿神经网络提高定位精度的效果。搭建了UWB定位系统,验证了动态定位中三步UWB定位算法的实际效果。结果表明,动态定位中,在完全视距环境中,算法的平均定位误差为28.68 mm,均方根定位误差为16.67 mm,最大定位误差为76.68 mm;存在非视距的环境中,算法的平均定位误差为38.73 mm,均方根定位误差为20.61 mm,最大定位误差为116.47 mm。由此可知,所提出的三步UWB定位算法具有精度高、成本低和稳定性好的优点,能满足所涉及的室内轨道交通的定位需求。 展开更多
关键词 三线室内轨道交通 UWB定位 卷积变分自编码器 非视距鉴别 误差补偿
在线阅读 下载PDF
卷积桥接孪生自编码器的近红外光谱转移研究
8
作者 杨泽会 吴箭 +11 位作者 李瑞东 郝贤伟 吕小芳 田雨农 张志成 吴灵通 李正莹 夏春艳 张恺 徐梦瑶 毕一鸣 夏自麟 《分析测试学报》 北大核心 2025年第3期471-478,共8页
近红外光谱仪器间的差异使得不同仪器共用预测模型变得困难,限制了技术的推广应用。为减少光谱偏移后重新建立预测模型的难度,该文提出了一种基于卷积桥接孪生降噪自编码器(CBSDAE)的近红外光谱模型转移方法。该方法利用卷积降噪自编码... 近红外光谱仪器间的差异使得不同仪器共用预测模型变得困难,限制了技术的推广应用。为减少光谱偏移后重新建立预测模型的难度,该文提出了一种基于卷积桥接孪生降噪自编码器(CBSDAE)的近红外光谱模型转移方法。该方法利用卷积降噪自编码器(CDAE)的编码器提取光谱的隐藏特征,并通过卷积神经网络拟合从机与源机光谱隐藏特征的转移映射函数,最后通过卷积降噪自编码器的解码器重构转移后的光谱。为验证其有效性,该文对烟叶近红外光谱图及化学成分预测结果进行评估。结果显示,CBSDAE方法转移后的从机光谱与源机光谱高度重合。相比于直接标准化(DS)、分段直接标准化(PDS)、光谱差值校正算法(SSC)、Shenk’s算法、卷积神经网络(CNN)、深度自编码器算法,使用该方法进行光谱转移后,预测烟碱的平均相对误差分别下降了6.42%、5.84%、5.32%、5.24%、4.35%和4.85%,预测的均方根误差(RMSEP)和相关系数也均优于上述方法。结果表明该方法是一种有效的模型转移方法。 展开更多
关键词 模型转移 编码器 孪生 卷积桥接 近红外光谱
在线阅读 下载PDF
一种基于自编码器降维的神经卷积网络入侵检测模型 被引量:3
9
作者 孙敬 丁嘉伟 冯光辉 《电信科学》 北大核心 2025年第2期129-138,共10页
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim... 为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。 展开更多
关键词 网络攻击 入侵检测模型 堆叠降噪稀疏自编码器 卷积注意力机制 残差网络
在线阅读 下载PDF
基于特征融合与时间卷积自编码器的工业过程故障检测
10
作者 曾峰荣 孙焕琪 熊伟丽 《高校化学工程学报》 北大核心 2025年第4期677-691,共15页
针对工业过程数据的多尺度时序特征提取困难问题,提出一种基于特征融合与时间卷积自编码器的故障检测方法。首先,采用多层时间卷积网络结构,从不同尺度对输入时间序列进行特征提取,构建多尺度的时间卷积自编码器;其次,设计基于高效通道... 针对工业过程数据的多尺度时序特征提取困难问题,提出一种基于特征融合与时间卷积自编码器的故障检测方法。首先,采用多层时间卷积网络结构,从不同尺度对输入时间序列进行特征提取,构建多尺度的时间卷积自编码器;其次,设计基于高效通道注意力的特征融合模块,通过跳跃连接加入时间卷积自编码器中,该模块对不同尺度的时序特征进行跨通道连接,生成相应权重对特征进行加权融合,从而捕获更丰富的时序信息,增强模型对正常序列与异常序列重构误差的区分度;最后,通过重构误差建立统计量,采用核密度估计确定控制限从而实现故障检测。将所提检测方法应用于数值案例和田纳西-伊士曼过程,实验结果证明了该方法具有良好的故障检测性能,能为复杂工业过程故障检测提供一定参考。 展开更多
关键词 故障检测 时间卷积网络 自编码器 注意力机制 特征融合
在线阅读 下载PDF
基于多头卷积自编码器的桥梁结构信号重构与损伤识别方法研究 被引量:1
11
作者 陈鑫婷 张军 +2 位作者 鲁东明 应柳祺 李强 《振动与冲击》 北大核心 2025年第6期298-305,共8页
针对传统监督学习需要大量的标记损伤数据问题,基于多头卷积自编码器建立了桥梁结构振动信号的重构方法,使用基于均方误差的损伤评估指标分析拱桥结构和梁桥结构振动信号重构的有效性以及不同损伤状态下的变化规律。结果表明:多头卷积... 针对传统监督学习需要大量的标记损伤数据问题,基于多头卷积自编码器建立了桥梁结构振动信号的重构方法,使用基于均方误差的损伤评估指标分析拱桥结构和梁桥结构振动信号重构的有效性以及不同损伤状态下的变化规律。结果表明:多头卷积自编码器在重构振动信号及其后续的损伤识别方面精度优良,多头一维卷积结构在损伤检测精度和灵敏度上优于传统的一维卷积结构;通过拱桥有限元仿真数据与连续梁桥损伤实测数据进行了方法验证,发现该方法能够准确地识别出桥梁结构的损伤发展趋势,在噪声环境下也具有较好的鲁棒性,可为桥梁结构健康监测数据分析提供参考。 展开更多
关键词 桥梁工程 多头卷积自编码器 振动响应 信号重构 损伤识别
在线阅读 下载PDF
基于卷积变分自编码器的滚珠丝杠副异常监测
12
作者 文娟 王午炎 +1 位作者 郑磊 潘柏松 《计算机集成制造系统》 北大核心 2025年第8期2999-3010,共12页
为解决滚珠丝杠副状态监测中面临的异常状态数据缺少问题,基于卷积变分自编码器(CNVAE)和动态核密度估计模型,提出一种无需故障数据的滚珠丝杠副异常监测方法。首先,采用一维卷积神经网络构建变分自编码器,以早期正常阶段采集的信号作... 为解决滚珠丝杠副状态监测中面临的异常状态数据缺少问题,基于卷积变分自编码器(CNVAE)和动态核密度估计模型,提出一种无需故障数据的滚珠丝杠副异常监测方法。首先,采用一维卷积神经网络构建变分自编码器,以早期正常阶段采集的信号作为输入,训练得到能够对正常数据进行重构的CNVAE模型。然后,将实时信号输入CNVAE模型中得到重构误差,作为表征滚珠丝杠副退化状态的健康指标。最后,采用一个在时间尺度上滑动的窗口选取不同时间段内的重构误差构成时间序列,输入核密度估计模型中,通过观测滑动窗口内重构误差的概率分布变化自动判定滚珠丝杠副是否出现异常。实验结果表明,提出方法能够区分滚珠丝杠副的不同退化阶段,表征滚珠丝杠副的退化演变过程,相比于传统方法能够更早地检测到滚珠丝杠副的异常。 展开更多
关键词 异常监测 卷积变分自编码器 核密度估计 滚珠丝杠副 退化阶段识别
在线阅读 下载PDF
基于优化卷积自编码器的机床进给轴健康状态监测
13
作者 吴楚杰 崔益铭 +3 位作者 马骋 王强 赵雷鸣 刘阔 《组合机床与自动化加工技术》 北大核心 2025年第5期1-6,共6页
在实际工程应用中,进给轴从健康到故障时间跨度长、运行工况复杂、故障数据获取成本高,导致故障数据与健康数据存在严重的不平衡。而传统数据驱动健康监测方法往往需要大量标签数据,且监测结果依赖于标签的数量和准确性。如何在有限数据... 在实际工程应用中,进给轴从健康到故障时间跨度长、运行工况复杂、故障数据获取成本高,导致故障数据与健康数据存在严重的不平衡。而传统数据驱动健康监测方法往往需要大量标签数据,且监测结果依赖于标签的数量和准确性。如何在有限数据下,进行健康监测是目前面临的一大挑战。针对这一问题提出了一种基于优化卷积自编码器的机床进给轴健康状态监测方法,首先采用小波包对进给轴振动信号与功率信号进行去噪重构,随后对降噪后的振动信号与功率信号进行时域、频域特征提取形成振动功率多源数据集,之后搭建一种基于卷积自编码器(CAE)与双向长短时记忆网络(BiLSTM)相结合的进给轴健康监测网络,同时在网络中融合残差网络(Res)和注意力模块(SENet)提高模型收敛能力与监测准确性。试验表明所提模型可以仅采用健康数据进行训练,实现进给轴健康状态监测,健康状态监测准确率可达97.7%,优于传统CAE模型。 展开更多
关键词 残差网络 注意力机制 双向长短期记忆网络 卷积自编码器 进给轴 健康状态监测
在线阅读 下载PDF
基于混合时序卷积自编码器的煤矿瓦斯异常检测方法
14
作者 高成 盛武 张琪 《计算机工程与设计》 北大核心 2025年第8期2410-2416,共7页
煤矿采煤面监测数据存在噪声多、数据不平衡的问题,提出一种基于混合时序卷积自编码器(HTCAE)的煤矿瓦斯异常检测方法。设计并行卷积分布拟合(PCDF)模块和融合方向与距离(FDD)的损失函数增强模型特征学习能力;提出基于欧氏距离、余弦距... 煤矿采煤面监测数据存在噪声多、数据不平衡的问题,提出一种基于混合时序卷积自编码器(HTCAE)的煤矿瓦斯异常检测方法。设计并行卷积分布拟合(PCDF)模块和融合方向与距离(FDD)的损失函数增强模型特征学习能力;提出基于欧氏距离、余弦距离和平均绝对误差的复合异常检测(CAD)模块,提升异常检测的准确性与鲁棒性。经实验分析验证,与SAE、DAE、AE、1D-CNN、FNN等方法相比,该方法的F1-score提高了3.98个百分点,表现出良好的鲁棒性,可为煤矿瓦斯异常预警提供可靠依据。 展开更多
关键词 异常检测 自编码器 卷积神经网络 无监督学习 鲁棒性 煤矿瓦斯 在线监测数据
在线阅读 下载PDF
基于卷积自编码器的煤矿带式输送机异常声音检测方法
15
作者 申龙 单浩然 +2 位作者 裴文良 杨贵翔 王永利 《工矿自动化》 北大核心 2025年第2期100-105,共6页
针对煤矿带式输送机异常声音样本缺少导致训练模型难以进行异常识别的问题,提出一种基于卷积自编码器(CAE)的煤矿带式输送机异常声音检测方法。首先,采集煤矿带式输送机托辊、减速机、电动机正常运行的声音信号,通过WebRTC降噪算法过滤... 针对煤矿带式输送机异常声音样本缺少导致训练模型难以进行异常识别的问题,提出一种基于卷积自编码器(CAE)的煤矿带式输送机异常声音检测方法。首先,采集煤矿带式输送机托辊、减速机、电动机正常运行的声音信号,通过WebRTC降噪算法过滤信号中的背景噪声,计算降噪后信号的梅尔频率倒谱系数(MFCC),获得设备正常运行的音频特征并输入到CAE中进行训练,得到训练好的CAE及重构的正常运行音频特征。其次,将正常运行音频特征和重构的正常运行音频特征输入均方损失函数(MSELoss),得到重构误差,并取重构误差最大值作为正常运行音频特征的重构阈值。然后,采集待检测的煤矿带式输送机托辊、减速机、电动机运行的声音信号,经WebRTC降噪、MFCC特征提取后输入到训练好的CAE,获得重构的待检测音频特征,将待检测音频特征与重构的待检测音频特征输入MSELoss,得到待检测音频的重构误差。最后,将待检测音频的重构误差与正常运行音频特征的重构阈值进行比较,若前者大于后者,则判断煤矿带式输送机存在异常。实验结果表明:在没有异常声音样本参与训练的情况下,该方法在带式输送机托辊、减速机、电动机运行声音数据集上的检测精确率分别达92.55%,94.98%,93.60%,单组声音检测时间为1.230 s,实现了检测精度和检测速度之间的平衡。 展开更多
关键词 煤矿带式输送机 故障诊断 异常声音检测 卷积自编码器 MFCC
在线阅读 下载PDF
基于双卷积自编码器的自适应波束形成
16
作者 蒋伊琳 李帅 +1 位作者 郑沛 唐元博 《电子与信息学报》 北大核心 2025年第2期510-518,共9页
在低信噪比环境下,阵列天线获取空域信号的来波方向极其困难,导致一般的波束形成方法无法准确形成正对入射信号的波束。针对上述问题,该文提出了一种基于双卷积自编码器的盲接收自适应波束形成(Dual Convolutional AutoEncoder-Adaptive... 在低信噪比环境下,阵列天线获取空域信号的来波方向极其困难,导致一般的波束形成方法无法准确形成正对入射信号的波束。针对上述问题,该文提出了一种基于双卷积自编码器的盲接收自适应波束形成(Dual Convolutional AutoEncoder-Adaptive Beamforming,DCAE-ABF)方法,该方法在基于大量空域统计信息的情况下,以时域-频域联合条件作为约束,利用两个独立的卷积自编码器(CAE)分别对阵列接收信号与辐射源信号进行特征提取,并使用深度神经网络(DNN)将两个CAE的特征编码进行连接,构建DCAE网络,实现在低信噪比环境下,面对未知频率和来波方向的入射信号时,也能够自适应形成正对入射信号的波束,达到盲接收的效果。仿真实验结果表明,在低信噪比环境下,单信号与双信号入射时所带来的信噪比增益均高于常规波束形成(CBF)方法与基于最小均方误差的自适应波束形成(Minimum Mean Square Error-Adaptive BeamForming,MMSE-ABF)方法,以及基于卷积神经网络的自适应波束形成方法(Convolutional Neural Networks-Adaptive BeamForming,CNN-ABF),且该增益在入射信号频率、角度变化时仍具有良好的稳定性。 展开更多
关键词 自适应波束形成 卷积自编码器 盲波束形成 信噪比增益
在线阅读 下载PDF
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型 被引量:1
17
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
基于变分自编码器的多源数据融合窃电检测方法 被引量:3
18
作者 蔡梓文 赵云 +3 位作者 陆煜锌 顾莲墙 陈康 高云鹏 《电力系统保护与控制》 北大核心 2025年第4期176-187,共12页
针对当前窃电检测仅使用单一用电负荷难以捕捉复杂窃电特征,导致窃电检测发生误判,存在误检率高和准确率低下等问题,提出一种融合用电负荷、环境温度、时间以及对应台区相位线损的新型窃电检测方法。首先构建多维度特征提取变分自编码器... 针对当前窃电检测仅使用单一用电负荷难以捕捉复杂窃电特征,导致窃电检测发生误判,存在误检率高和准确率低下等问题,提出一种融合用电负荷、环境温度、时间以及对应台区相位线损的新型窃电检测方法。首先构建多维度特征提取变分自编码器(variational autoencoder for multi-dimensional feature extraction,MF-VAE)来提取用户用电行为的多维度特征。然后,基于注意力时序卷积网络(attention temporal convolutional networks,ATCN)建立判别模型,再通过膨胀卷积和因果卷积获取多维度窃电行为特征的时序关系。同时,引入卷积注意力模块分配各维度特征的注意力权重,以提高模型的表现和泛化能力。最后采用Softmax分类器完成对多源数据中潜在窃电行为的准确识别。实验结果表明,用该方法提取的窃电行为特征更加丰富和多元化,能够有效降低窃电检测误检率并提高窃电行为判别准确率。 展开更多
关键词 窃电行为判别 多源数据融合 改进时域卷积网络 变分自编码器 注意力机制
在线阅读 下载PDF
一种改进自编码器的半监督调制识别方法
19
作者 马培云 李国军 郑建忠 《小型微型计算机系统》 北大核心 2025年第5期1042-1047,共6页
自动调制识别是无线通信领域的一项重要技术,现有方法大多采用监督学习的方法,难以实现对海量无标签样本的调制识别.为了削弱对样本标签的依赖性,本文提出一种改进自编码器的无监督特征学习方法,即残差卷积自编码器(Residual Convolutio... 自动调制识别是无线通信领域的一项重要技术,现有方法大多采用监督学习的方法,难以实现对海量无标签样本的调制识别.为了削弱对样本标签的依赖性,本文提出一种改进自编码器的无监督特征学习方法,即残差卷积自编码器(Residual Convolutional Autoencoder,RCAE),在自编码器中引入残差学习可以减少早期关键特征的丢失,并提高模型在无监督学习阶段的收敛能力,降低训练难度,RCAE的编码器充当特征提取器从原始调制信号中学习有效特征,并与分类器进行联合设计实现半监督条件下的信号调制识别.本文所提方法在公开数据集RML2016.10a上进行模拟训练和验证,实验结果表明,在信噪比为0dB和18dB时识别精度分别能达到89.98%和93.1%. 展开更多
关键词 调制识别 半监督学习 卷积自编码器 残差学习
在线阅读 下载PDF
基于多尺度卷积自编码器的地震噪声智能压制方法及应用 被引量:2
20
作者 谢晨 徐天吉 +4 位作者 钱忠平 沈杰 刘胜 唐建明 文雪康 《石油物探》 CSCD 北大核心 2024年第1期79-90,共12页
针对传统地震噪声压制方法存在的泛化性不足、主观性强以及实际无噪声数据稀缺等问题,利用深度学习方法的泛化特性,在保护有效信号的基础上,建立了一种地震噪声智能压制方法。基于有效利用少量实际无噪声数据的原则,首先通过正演数值模... 针对传统地震噪声压制方法存在的泛化性不足、主观性强以及实际无噪声数据稀缺等问题,利用深度学习方法的泛化特性,在保护有效信号的基础上,建立了一种地震噪声智能压制方法。基于有效利用少量实际无噪声数据的原则,首先通过正演数值模拟地震数据构建数据集,再搭建基于InceptionV4卷积模块和注意力机制的卷积自编码器网络,并利用正演数据对网络预训练。该过程首先依靠数据驱动方法和网络强大的特征提取能力初步获取地震数据的有效特征表达,通过正演数值模拟数据试验分析发现,该方法既能有效压制绝大部分随机噪声和相干噪声,还能比DnCNN网络更大程度地避免损伤有效信号;然后,再采用迁移学习的策略和少量实际地震数据继续训练网络,最终获得实际地震数据噪声压制模型。将该方法应用于实际地震数据噪声压制试验,并从压制效果、保幅性等方面评价方法效果,结果表明该方法对于随机噪声、面波等噪声干扰具有一定的压制能力,准确地恢复了有效信号,且具有处理成本低、效率高等优势。 展开更多
关键词 地震勘探 噪声压制 卷积自编码器 迁移学习 注意力机制
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部