故障数据的缺失一直是制约设备故障诊断发展的重要因素,现有研究通过刻意损坏设备的方法来采集故障数据。为实现座椅电机的无损故障诊断,文章对座椅电机的故障机理进行分析,确定可能发生的故障类型,通过在座椅电机表面粘贴微型喇叭并播...故障数据的缺失一直是制约设备故障诊断发展的重要因素,现有研究通过刻意损坏设备的方法来采集故障数据。为实现座椅电机的无损故障诊断,文章对座椅电机的故障机理进行分析,确定可能发生的故障类型,通过在座椅电机表面粘贴微型喇叭并播放故障声音,来模拟故障的发生。在自编码器系统的基础上,引入卷积操作,使用卷积层代替全连接层,通过输入数据维度、卷积核的尺寸和数量以及池化、正则化等操作对模型结构进行调整。采用IDMT Isa Electric Engine数据集作为源域数据,对模型进行预训练。使用迁移学习方法将源域中已经学习到的数据分布迁移到座椅电机故障诊断任务中,并与各类模型检测结果进行对比。结果显示,文中方法在召回率保持1.00的情况下,曲线下面积达到0.86,检测结果可靠,具有实际应用价值。展开更多
卷积自编码器(Convolutional Auto Encoder,CAE)提取的粗粒度池化特征具有一定范围内旋转和平移的不变性,因而得到广泛使用.然而,目前CAE仍主要依靠经验调节内部参数以获取满足要求的粗粒度池化特征.本文将CAE看作一个整体,从概率上分...卷积自编码器(Convolutional Auto Encoder,CAE)提取的粗粒度池化特征具有一定范围内旋转和平移的不变性,因而得到广泛使用.然而,目前CAE仍主要依靠经验调节内部参数以获取满足要求的粗粒度池化特征.本文将CAE看作一个整体,从概率上分析了影响其表现的具体原因,构建了一个通用框架用于调节其中的主要参数以获取更好的粗粒度特征.首先从概率上权衡了粗粒度特征在池化层上的判别性与不变性,并在CAE中选择合适的卷积范围和白化参数.然后通过分析池化域内特征的稀疏度选择相应的池化方法以获取具有更好可分离性的粗粒度池化特征.在两个公开数据库(STL-10和CIFAR-10)的实验结果表明本文提出的方法可以指导CAE提取到更好的粗粒度池化特征并在多类分类任务中表现得更好.展开更多
文摘故障数据的缺失一直是制约设备故障诊断发展的重要因素,现有研究通过刻意损坏设备的方法来采集故障数据。为实现座椅电机的无损故障诊断,文章对座椅电机的故障机理进行分析,确定可能发生的故障类型,通过在座椅电机表面粘贴微型喇叭并播放故障声音,来模拟故障的发生。在自编码器系统的基础上,引入卷积操作,使用卷积层代替全连接层,通过输入数据维度、卷积核的尺寸和数量以及池化、正则化等操作对模型结构进行调整。采用IDMT Isa Electric Engine数据集作为源域数据,对模型进行预训练。使用迁移学习方法将源域中已经学习到的数据分布迁移到座椅电机故障诊断任务中,并与各类模型检测结果进行对比。结果显示,文中方法在召回率保持1.00的情况下,曲线下面积达到0.86,检测结果可靠,具有实际应用价值。
文摘卷积自编码器(Convolutional Auto Encoder,CAE)提取的粗粒度池化特征具有一定范围内旋转和平移的不变性,因而得到广泛使用.然而,目前CAE仍主要依靠经验调节内部参数以获取满足要求的粗粒度池化特征.本文将CAE看作一个整体,从概率上分析了影响其表现的具体原因,构建了一个通用框架用于调节其中的主要参数以获取更好的粗粒度特征.首先从概率上权衡了粗粒度特征在池化层上的判别性与不变性,并在CAE中选择合适的卷积范围和白化参数.然后通过分析池化域内特征的稀疏度选择相应的池化方法以获取具有更好可分离性的粗粒度池化特征.在两个公开数据库(STL-10和CIFAR-10)的实验结果表明本文提出的方法可以指导CAE提取到更好的粗粒度池化特征并在多类分类任务中表现得更好.